
Deep Learning techniques for signal
processing and event

reconstruction in DUNE

Supervisor: Manuel Rodriguez
E-mail: manuel.jesus.rodriguez.alonso@cern.ch
Supervisor: Lorenzo Uboldi
E-mail: lorenzo.uboldi@cern.ch
Supervisor: Paola Sala
E-mail: paola.sala@cern.ch

Openlab Project by:
Laura Accorto

E-mail: laura.accorto@gmail.com

Summer 2021



Abstract

DUNE - Deep Underground Neutrino Experiment - will be an experiment based in the USA
whose main goal will be to study long-baseline neutrino oscillations from an accelerator beam.
At CERN, a smaller prototype of the DUNE far detectors has been created, ProtoDUNE, with
the objective to test and validate the technology required for DUNE far detectors. The signal
captured by ProtoDUNE needs to be processed to clean it from noise. To do so, a Deep Learning
tool has been developed at CERN. However, the costs of this tool imply the necessity to evaluate
its performance comparing to more classical techniques, which involve lower costs. For this
reason, a statistical algorithm has been considered, which is the one currently used: the results
of the two solutions are compared in this project.

Introduction

DUNE - Deep Underground Neutrino Experiment - will be a large experiment that will be based
in the USA and whose main objective is to detect neutrinos and analyze their behaviour. At
CERN, a prototype of the DUNE far detector has been built: ProtoDUNE is a 20 times smaller
version of the DUNE far detector, whose components are scaled 1:1 and have the same design;
the role of this prototype is to test and validate the technology required for DUNE far detectors.

This experiment gathers a large amount of data, which needs to be lightened in order to save
memory space. For this reason, a technique to flexibly distinguish particle signal from everything
else is necessary. Two possibilities are analysed in this work: the first, a neural network for
image segmentation used to classify the signal; the second, a statistical approach - the Hit
finding algorithm - which is the currently used one. Each of the two techniques considered
has its strengths and its weaknesses, and for this reason, an analysis that compares the results
obtained has been conducted in this work.

First of all, we’re going to introduce the ProtoDUNE data and its structure. Then we will
describe the two techniques proposed to process the data and classify the signal in a deeper way.
A comparison between the results obtained is then made to show each technique’s advantages
and disadvantages.

The ProtoDUNE Data

ProtoDUNE is made up of two drift volumes, which are separated by a vertical cathode plane.
Two anode planes are positioned at the opposite sides of the drift volumes with respect to the
cathode. The detector is located inside a cryostat which insulates the detector volume from
the outside. ProtoDUNE detector is then filled with Liquid Argon (LAr). The cathode plane
is designed to be held at -180 kV, providing a 500 V/cm drift electric field in each of the two

2



opposite horizontal directions: this field allows an electron to travel the entire drift length in
slightly less than 2.5 µs. Ionization electrons, produced by traversing charged particles, are
drifted to the anode plane by the electric field. A closed circle purification system continuously
processes the LAr, eliminating contamination and refilling the active volume so that electrons
are not captured during their way.

On each of the two anode planes of ProtoDUNE, we can find three APAs - Anode Plane Assembly
- for a total of six APAs, performing the signal readout. Each APA is made by three planes of
evenly spaced wires: the first two planes - induction planes - are transparent to the drifting
electrons and, being traversed, read out the local modification of the electric field. The third
one - collection plane - is at the higher potential and collects the electrons, detecting the total
charge. The wires of the three planes are placed at different angles enabling a two-dimensional
reconstruction of the event when the information of the three planes is combined.

The signal is collected over time for each channel. In particular, ProtoDUNE data are split into
"events": the time scale has been discretized with a sampling rate of 2MHz, where each tick is a
sample; the event is then a 3ms window length, translating to 6000 ticks. We actually look at
5888 time-ticks over all 2080 channels from the three planes. Channels from 1 to 800 belong to
the first induction plane, channels from 801 to 1600 belong to the second induction plane, and
channels from 1601 to 2080 belong to the collection plane.

Data is loaded using PyTorch’s DataLoader : each event is divided into 23 subsequent batches,
containing 256 time-ticks each. Each batch is then a 2080x256 array: by concatenating all 23
batches in the correct order; then one can obtain the complete 2080x5888 array, which spaces
along all time-ticks of the event.

Once we have concatenated all batches for each channel, we can then visualize a time series
data representing the signal recorded at time t, t = 1, . . . , 5888. Data regarding the single event
from a specific APA is then a collection of 2080 time series. For each APA, we have around 3580
events, a total of 3580 x 2080 (7446400) time series. Figure 1 shows the signal from channels
coming from induction and collection planes: it can be seen that data recorded by the collection
plane behaves very differently compared to data recorded by the induction planes. Over the
induction plane, the signal has a bipolar shape, while the collection plane signal has a positive
unipolar shape. This difference is due to the fact that the electrons pass through the induction
wires while the collection ones completely absorb them. In the collection plane, the signal to
noise ratio is much higher than in the induction planes, and, for this reason, it is much easier to
detect anomalies and distinguish the signal from noise when working over the collection plane.

It is possible to classify the signal through some different techniques. We will call a hit everything
which has to be classified as signal. In the next section, the two techniques we consider to find
the hits are presented and explained in more detail. In the end, for each event, we will obtain a

3



Figure 1: A signal from a chosen event of APA 5 over induction plane and collection plane

2080x5888 binary array, in which 1 denotes a hit found in the selected channel and in that time
tick, and 0 denotes noise.

RoI finding in ProtoDUNE

Our objective is to find the hits: a hit means everything which has to be denoted as signal.
Once we find the hits, we can detect the regions of interest (RoI), which are made up by the
adjacent hits in the array space.

To find hits in ProtoDUNE, we considered two algorithms:

• the Deep Learning algorithm that exploits neural network for semantic segmentation, to
classify the hits;

4



• the Hit finding algorithm that makes use of statistical techniques to classify the hits; this
is the currently used algorithm in the ProtoDUNE experiment.

Deep Learning algorithm

The Deep Learning algorithm exploits semantic segmentation theory, considering, for each event,
the 2080x5888 array as an image and classifying each pixel of it based on what object should be
the pixel part of, that is, either signal or noise. In this case, the output has the same dimension
as the input: a possible approach is to use the encoder-decoder architectures for the neural
network. The dimensionality of the data is firstly compressed and then restored to the original
one to make the pixel-wise classification.

We define a two-class segmentation task in our setting, where one class represents signal and
the other electronic noise. We can train the network to classify, pixel by pixel, a raw event of
ProtoDUNE identifying with precise localization of both signal and noise.

LinkNet (Chaurasia & Culurciello (2017)) is a neural network structured with encoder and
decoder blocks, and it is a lightweight and fast solution that solves the usual problem related
to semantic segmentation. In this approach, networks are generally deep and slow, and the
encoder-decoder structure tends to be difficult to train. Authors of LinkNet showed that it
outperforms many other semantic segmentation networks both in terms of speed and in terms
of accuracy. For this reason, this architecture has been chosen as a starting point: the Deep
Learning algorithm used for ProtoDUNE is a tiny and simplified version of LinkNet. Having
only two classes, a sigmoid has been used instead of a softmax as an activation function for
the last layer. For every pixel, the output is p ∈ [0, 1] representing the signal probability. The
output is converted to binary at the end, putting each pixel to 1 if the probability of being
signal is more than 0.5, to 0 otherwise.

Hit finding algorithm

The currently used solution, Hit finding algorithm, exploits the Frugal algorithm (Ma et al.
(2014)) to create a threshold based on which the classification is conducted: data is classified as
signal wherever it lays above this threshold; otherwise, it is considered as noise.

In this case, data is considered in its time-series shape: for each event, for each channel, the
time-series containing the intensity of the signal at time t is analyzed.

In order to "smooth" the time series, a modification of the Frugal algorithm is considered.

Frugal algorithm can use only one unit of memory per group to compute a generic quantile
for each group in a stream of data. For stochastic streams where data items are drawn from
a distribution independently, it is proved that the algorithm finds an approximation to the
quantile rapidly and remains stably close to it. Through this algorithm, the generic quantile is

5



estimated by following the direction suggested by the data stream: if it increases, the quantile
does it too. At the very beginning, the quantile estimate is set to 0; then, for each step of the
data stream, if data is higher than the quantile estimation, the quantile estimation is increased
by 1; otherwise, it is decreased by 1. The detailed algorithm for the generic quantile is shown in
Ma et al. (2014).

In Hit finding algorithm the Frugal algorithm is used to compute 25%, 75% quantiles and the
median (50% quantile), but with a modification of the algorithm. The modification proposed
and used throughout the Hit finding algorithm uses accumulators to evaluate the median and
the quantiles. Instead of updating the quantile estimation, m̃, time-by-time, it is made only
when an accumulator is over its limit. For example, if the limit is 10, then it has to happen that
si > m̃ 10 times subsequently to increment m̃ (similarly for the decrementation). This variation
produces smoother estimations of the quantiles (the higher the accumulator limit, the smoother
the estimation will be).

The median, the 25% and the 75% quantiles are calculated for each time-series data (that is, for
each channel and each event). The median is considered as a pedestal, and the 25% and 75%
quantiles allow to estimate the pedestal’s variance at time t, σt; then, the threshold at time t is
calculated as K · σt, where K = 5 for all channels in the collection plane, and K = 3 for all
channels in the two induction planes.

The threshold is calculated over the raw data but applied over data in which a Firwin filter 1

with 7 taps and a 0.1 cutoff has been applied in order to remove some noise. A hit is identified
every time the filtered data lays over the threshold.

An example of all quantities calculated by the Hit finding algorithm for channel 1750 over a
single event of APA 5 is presented in figure 2.

This procedure is repeated for each channel and each event, obtaining an output which is
analogue to the Deep Learning algorithm one, that is, a binary 2080x5888 array for each event
and each APA.

Comparison and analysis of the two RoI finding techniques

Both algorithms shown in the previous section allow us to find hits and, consequently, the
regions of interest. Still, one has to analyse the results in order to see the main differences,
highlighting the advantages and disadvantages of each technique.

An advantage of the Hit finding algorithm is that being a statistical algorithm, everything it
does is easy to interpret and to understand. In contrast, the Deep Learning algorithm is actually
a black box. On the other hand, the Deep Learning algorithm could allow higher performance in
terms of accuracy. Therefore one should evaluate if it is worth it to apply this technique to data.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.firwin.html

6



Figure 2: Hit finding algorithm applied over a single event of APA 5, channel 1750.

To analyse the main differences between the results proposed by the two algorithms, we start
counting the average percentage of covered image (PCI) for results given by each algorithm.
PCI is calculated by counting the percentage of pixels classified as a hit on each event and then
averages over all the events. We obtain PCI = 2.92% for the Deep Learning algorithm and
PCI = 0.74% for the Hit finding algorithm, that is, Deep Learning algorithm predicts almost 4
times more hits than the Hit finding algorithm.

To see the spatial distribution of the signal for each algorithm, we can consider 2D-Histograms
over a sample of randomly chosen events. These histograms are made by overlapping events so
that for each pixel, we have the frequency of predicted hit on that pixel, that is on that channel
and on that time-tick. In figure 3 histograms for both Deep Learning algorithm and Hit finding
algorithm are presented.

From the histogram, we can see that, while the Deep Learning algorithm tends to predict hits
uniformly all over the channels without any significant difference, the Hit finding algorithm is
more likely to predict hits over channels belonging to the collection plane, that is, from channel
1600 to 2080. This fact could be due to the statistical algorithm being not flexible enough for
the induction planes classification task.

We confirm this feature if we also calculate the average PCIs over the different planes, which are
collected in the table 1. It is clear that the Deep Learning algorithm performance is stable over

7



Figure 3: 2D histograms over a sample of randomly chosen events, both for Neural Network (DL
algorithm) and Hit finding algorithm.

all the planes, while it changes a lot for the Hit finding algorithm when passing from induction
to collection.

1st Induction 2nd Induction Collection

Neural Network 2.87% 2.79% 3.25%
Hit finding algorithm 0.54% 0.62% 1.25%

Table 1: PCIs over different planes for both algorithms.

To see how the prediction of the two algorithms is matching pixel-by-pixel, we can consider, over
a single event, typical Machine Learning metrics, that is, true positives, true negatives, false
positives and false negatives. In particular, we consider the Deep Learning algorithm prediction
as target and check how much the Hit finding algorithm prediction is matching. In this way, we
can compute all the metrics for each event and average them over all the events. More precisely:

• False Negatives (FN) are pixels classified as hits by the Deep Learning algorithm but not
by the Hit finding algorithm;

• False Positives (FP) are pixels classified as hits by the Hit finding algorithm but not by
the Deep Learning algorithm;

• True Negatives(TN) are pixels classified as noise by both algorithms;

8



• True Positives (TP) are pixels classified as hits by both algorithms.

All indexes are normalized to the target, which in our case is the neural network prediction.

We obtain FN = 81.8% and FP = 0.16%, so it is clear that Hit finding algorithm predicts
much less compared to the Deep Learning algorithm. Still, when Hit finding algorithm predicts
a hit, at least it is coherent with the Deep Learning algorithm prediction since false positives
are very low.

In order to have a better idea of the matches and their location, we plot these metrics over a
single event image: an example is presented in figure 4.

Figure 4: ML metrics mapped over a single event considering Neural Network as a target; on the
right, a zoom over a single track on the collection plane.

True negative pixels are represented in grey, true positive pixels in white, false negative pixels
in blue and false positive pixels in red, always considering the neural network as a target and
the Hit finding algorithm as the prediction.

From the images and the zooms over single tracks, we can see many false negatives, especially
over the induction plane. However, the false negatives are usually next to some true positives.
In many cases, the Hit finding algorithm doesn’t miss the region of interest but predicts a
smaller version of it. Isolated false negatives, which are the problematic ones, are more frequent
over the induction planes. At the same time, from the zoom, we can see that, while the Deep
Learning algorithm tracks are continuous lines, on the other hand, the Hit finding algorithm
tends to predict interrupted lines.

The comparisons made up to now are simply showing the main differences between the two
methods. Still, there is no possibility to evaluate the predictive performance of each algorithm
through these metrics. In order to do so, a common ground truth is necessary, but it is not
available. For this reason, we perform a Monte Carlo simulation. For computing the metrics,
we use the Monte Carlo reconstruction. This reconstruction is obtained by using the official
reconstruction chain of ProtoDUNE, that is, Pandora (Marshall & Thomson (2015)). Future
work could be done by producing the metrics with the ground truth obtained by the Monte
Carlo simulation.

9



We simulate two datasets:

• the cosmic dataset, in which both cosmic rays and radiological events are simulated;

• the radiological dataset, in which only radiological events are simulated.

By considering the radiological dataset, we can see also the performances of the two algorithms
when considering very low energy events.

The Monte Carlo reconstructions are compared firstly to the predictions made by the Deep
Learning algorithm and secondly to the predictions made by the Hit finding algorithm, both for
the cosmic and the radiological dataset.

Over the cosmic dataset, we can see the main behaviours of both algorithms. An example of
their predictions compared to the Monte Carlo reconstruction over the cosmic dataset is shown
in figure 5. In table 2 false negatives and false positives for each algorithm over the Monte Carlo
cosmic dataset are shown.

Figure 5: Predictions by both algorithms over the Monte Carlo cosmic dataset.

Neural Network Hit finding algorithm

False negatives 15.84% 69.50%
False positives 44.55% 0.70%

Table 2: False negatives and false positives by both algorithms predictions over the cosmic dataset.

From these results, it seems that the Deep Learning algorithm tends to overpredict, while the
Hit finding algorithm tends to underpredict. Anyway, this consideration holds only if one thinks
that the Monte Carlo reconstruction is a reliable reconstruction of the ground truth: it could be
that the reconstruction itself classifies low energy signal as noise. Therefore some of the false
positives given by the neural network may actually be true positives.

Similarly to what we have already done before, we can plot the location of all metrics over a
single event, but this time considering the Monte Carlo reconstruction as a target. Figure 6
shows the metrics for both algorithms over a single event from the cosmic dataset. The majority
of the false positives produced by the Deep Learning algorithm is adjacent to true positives,

10



meaning that the neural network manages to find the tracks. Still, they are thicker than the
reconstructed Monte Carlo ones. On the other hand, the Hit finding algorithm produces many
isolated false negatives: it often happens that Hit finding algorithm completely misses tracks
along with the event.

Figure 6: Metrics’ location by both algorithms over the Monte Carlo cosmic dataset.

In the same way, we can consider predictions of both algorithms over the radiological dataset. In
this case, the results are more difficult to evaluate since the signal is very mild and problematic
to catch, as one can see from the predictions shown in figure 7.

Figure 7: Predictions by both algorithms over the Monte Carlo radiological dataset.

For this reason, we check the true positives and false positives differently: for each track which
is in the Monte Carlo reconstruction, we check if it is present also in the prediction given by
each algorithm, even if they only partially overlap, we classify it as true positives; at the same
way, we check if some tracks which are present in the prediction of the algorithms are completely
missing in the Monte Carlo reconstruction, and in this case, we identify the false positives.
We obtain that the true positive rate is 95% for the Neural Network, even with a higher false
positive rate, but the true positives are only 49% for the Hit finding algorithm. We can conclude
that the accuracy of the neural network is higher, but also its purity is much lower than the Hit
finding algorithm.

11



Conclusions and Future work

One should choose the algorithm based on which one best fits his necessities and costs in terms
of both: computational time and money.

If we consider the results just obtained, we can see that generally, the Deep Learning algorithm
tends to overpredict, and the Hit finding tends to underpredict; in this sense, the choice
of the algorithm is guided by the costs and benefits that come with overpredictions and
underpredictions.

At the same time, another important aspect that would drive the choice is surely the final
purpose that one has: if the objective is to find the single hits at a pixel-wise level, then the
Hit finding algorithm performance is worse compared to the Deep Learning algorithm; on the
other hand, if we consider the classification task at a region-level, then the Hit finding algorithm
performance is not as bad as at the pixel level, but still there are tiny tracks which aren’t
identified at all and many long tracks are split.

Moreover, it is crucial to understand what is the kind of signal that we want to detect. If we
have to handle very low energy events, we have seen that the Deep Learning algorithm performs
way better than the Hit finding algorithm.

A lot of work still needs to be done, particularly regarding the ground truth to compare with;
a Monte Carlo truth can be extracted as ground truth to see if the predictive performance
changes compared to the one already seen over the Monte Carlo reconstruction. Moreover,
some post-processing over the neural network results can be done by removing all classified
tracks shorter than a threshold in the time-tick direction. These tracks can be considered false
positives since we know that the signal has a minimum length in time.

Bibliography

Chaurasia, A. & Culurciello, E. (2017). LinkNet: Exploiting encoder representations for
efficient semantic segmentation. In 2017 IEEE Visual Communications and Image Processing
(VCIP).

Ma, Q., Muthukrishnan, S. & Sandler, M. (2014). Frugal Streaming for Estimating
Quantiles:One (or two) memory suffices. arXiv:1407.1121 [cs] ArXiv: 1407.1121.

Marshall, J. & Thomson, M. (2015). The Pandora Software Development Kit for Pattern
Recognition. Eur. Phys. J. C 75, 439.

12


	Bibliography

