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PROJECT SPECIFICATION 
 

The LHC delivers collisions to CMS at a 40 MHz bunch crossing rate, generating hundreds of Tb/s of 
data in the detector but just a tiny fraction of them can be effectively read and stored. The Level-1 (L1) 
trigger, implemented in custom hardware using Field Programmable Gate Array (FPGA) devices, uses 
coarse-grained information from the calorimeter and muon subdetectors to search for signatures of 
interesting physics, and selects events at a maximum rate of 100 kHz. 

Future upgrades will enable an L1 scouting system to capture intermediate data from the tracking, 
calorimeter and muon systems. This information would help with further improvements and analysis of 
the entire trigger system, as well as provide comprehensive and detailed detector diagnostics in real-
time. 

Machine Learning (ML) models are ideal candidates for the L1 scouting system as they can be 
implemented on FPGAs for close-to real-time analysis. By using the offline reconstructed parameters 
as targets, they can be used for the re-calibration of muon track parameters provided by the Global 
Muon Trigger (GMT). The same strategy can be potentially applied for the analysis of calorimeter data. 
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ABSTRACT 
 

The Level 1 (L1) trigger at CMS uses coarse-grained information to search for signatures of interesting 
physics. L1 scouting is a new paradigm for data collection at CMS which could help in the early 
identification of promising potential signals, independently of any trigger selection bias. It will for the 
first time enable the reading out of trigger objects at the full collision rate (40 MHz), in order to perform 
studies and take measurements not possible within the constraints of the 100 KHz Level 1 accept rate.  

The objective of this project is to investigate efficient machine learning algorithms with fast inference 
time for the L1 scouting system. Deep learning models have been compared to another class of 
machine learning models – namely kernel methods – as viable solutions to be implemented on FPGA 
devices. Several tests have been performed to compare accuracy on the re-calibration of muon track 
parameters. An analysis of the floating-point operations required by both models has been carried out. 
Preliminary tests have also been conducted for the re-calibration of jet transverse momentum. 
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1. INTRODUCTION 

The Large Hadron Collider (LHC) located at CERN, Geneva, is the world’s largest particle accelerator, 
consisting of a 26.7km ring. The LHC accelerates protons to nearly the speed of light and then collides them 
at four points around its ring, each hosting a particle detector.  

One of these detectors is CMS (Compact Muon Solenoid), which is a general-purpose particle detector, i.e., 
designed to enable searches for a wide variety of new physics. The CMS detector consists of several 
concentric layers of components (as shown in Figure 1) that exploit the different properties of particles to 
measure their energy and momenta. A highly detailed description of the CMS detector can be found in [1]. 

 

Figure 1 – Overview of the CMS detector. Credits: https://cms.cern/detector 

A solenoid magnet is used to bend charged particles as they fly outwards from the collision point. Bending 
the trajectories of the particles helps to identify the charge and the momentum of each particle. The steel 
“yoke” that forms the bulk of the detector’s mass is used to confine the 3.8 Tesla magnetic field generated 
by the solenoid magnet to the volume of the detector. A silicon tracker made of around 75 million individual 
electronic sensors generates electromagnetic interactions with the traversing particles and produces hits 
that can then be joined together to identify the track of the traversing particle. 

The energy of the particles is measured by two kinds of “calorimeters”. The Electromagnetic Calorimeter 
(ECAL) is the innermost of the two and measures the energy of electrons and photons by stopping them 
completely. Hadrons, which are composite particles made up of quarks and gluons, fly through the ECAL 
and are stopped by the Hadronic Calorimeter (HCAL). 
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Detecting muons is one of CMS’s most important tasks. Muons are charged particles that are just like 
electrons and positrons but are 200 times heavier. Unlike most particles, muons are not stopped by either 
of the two calorimeters. Therefore, chambers to detect muons are placed at the very edge of the experiment 
where they are the only particles likely to register a signal.  

 

Figure 2 – A transverse slice through the CMS detector. Credits: [13] 

The LHC delivers collisions to CMS at a 40 MHz bunch crossing rate. Each bunch crossing generates 
hundreds of Tb/s of data in the detector but just a tiny fraction of them can be effectively read and stored. A 
two-level trigger system selects the potentially interesting events to be read out for permanent storage and 
subsequent analysis [2]: 

• The Level-1 (L1) trigger [2], implemented in custom hardware using field programmable gate array 
(FPGA) devices, uses coarse-grained information from the calorimeter and muon subdetectors to 
search for signatures of interesting physics, and selects events at a maximum rate of 100 kHz. 

• The High-Level Trigger (HLT) is a farm of processors analysing full events read out at the L1-accept 
rate, using complex software algorithms to further reduce the event rate to about 1 kHz to be stored 
for offline analysis.  

A schematic representation of the data flow is depicted in Figure 3.  

The Global Muon Trigger (GMT, part of the L1 trigger) accumulates muons candidates from different 
regions: the barrel region (equipped with drift tube technology), the endcap regions (equipped with cathode 
strip chamber technology) and overlap regions (equipped with resistive plate chamber technology). Based 
on their quality and transverse momentum, the best eight candidates are sent to the Global Trigger (also 
part of the L1 trigger) to make the final decision. 

After the planned Phase-2 upgrade of CMS [3], around 2027, the L1 trigger will include information from the 
tracking detectors. The L1 and HLT accept rates will be increased to 750 and 7.5 kHz respectively. Most 
importantly in regard to this work, the CMS L1 trigger will also include a new paradigm for data collection, 
called ‘L1 Scouting’ or ’40 MHz Scouting’. It will for the first time enable the reading out of trigger objects at 
the full collision rate (40 MHz), in order to perform studies and take measurements not possible within the 
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constraints of the Level 1 accept rate. In this way, L1 scouting could help in the early identification of 
promising potential signals, independently of any trigger selection bias [4]. 

Recently, deep learning models have been proposed to facilitate the early identification of potential physics 
signals, as well as improve the current data reconstruction pipeline in the L1 scouting system. A scouting 
demonstrator system has been built to show the feasibility of the studies, with deep learning models 
implemented on FPGAs for close-to real-time analysis. [5]. 

The objective of this project is to investigate efficient machine learning algorithms with fast inference time 
for the L1 scouting system. Deep learning models have been compared to another class of machine learning 
models – namely kernel methods - for the re-calibration of L1 trigger parameters. Several tests have been 
performed to compare accuracy and inference operations for the re-calibration of muon track parameters. 
Preliminary tests have also been conducted for the re-calibration of jet transverse momentum. 

 

 

2. DATA ANALYSIS 

L1 trigger measurements follow the CMS coordinate system (shown in Figure 4). The beam direction is 
parallel to the z axis, and collisions occur at approximately x = y = 0. The main parameters used in this study 
are: 

• The azimuthal angle 𝜙𝜙, measured in the x-y plane 
• The pseudorapidity 𝜂𝜂 =  − ln(tanh(𝜃𝜃/2)), with 𝜃𝜃 being the polar angle in the z-y plane 
• The transverse momentum 𝑝𝑝𝑇𝑇, which is the component of the momentum 𝑝𝑝 in the x-y plane 

 

Figure 3 – A schematic representation of the data flow at the CMS detector. Credits: [5] 
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a. Muons 

Muon track parameters have been collected from a preprocessed output of a special L1 trigger called 
ZeroBias during LHC Run-2 (2017-2018). ZeroBias (ZB) is a beam bunch crossing-time trigger, without 
physics signal requirements, used to understand the underlying event structure of collisions occurring at 
CMS [6]. Each row contains L1 trigger measurements of a single CMS event. Each event contains 
measurements related to a specific number of particles: 8 muons, 12 jets, 12 EGammas and 12 taus. An 
EGamma is an object that could be either an electron or a photon (gamma particle), but the resolution of 
the L1 trigger is not good enough to differentiate between those two possibilities. Each particle is 
characterized by a different number of features. The detailed number of features for each particle is shown 
in Table 1. 

Table 1 – Schematic structure of the dataset 

Muons Jets Egammas Taus 

nMatchedMuons 8 x 15 
features nJets 12 x 3 

features nEGammas 12 x 4 
features nTaus 12 x 5 

features 

Table 2 shows the details of the four L1 measurements contained in the dataset which are used as inputs 
for the muon re-calibration problem. Each variable is stored as an integer value which represents a bin index 
over a specific measurement range [7]. In order to obtain the real values of the measurements, each integer 
number has to be mutliplied by the corresponding bin width. 

Table 2 – Variable specifications for the L1 muon track parameters 

Name Description Dtype Range Bin width Min-Max 
hwPtL1 transverse momentum int64 [0; 29 − 1] 0.5 GeV [0;  255] GeV 

hwPhiL1 azimuthal angle int64 [0; 210 − 1] 2𝜋𝜋/576 ∼ 0.011 rad [0;  2𝜋𝜋] rad 

hwEtaL1 pseudorapidity int64 [−28; 28 − 1] 0.0870/8 = 0.010875 [−2.45;  2.45] 

hwSignL1 particle charge int64 {0, 1} - - 

The reconstructed values have been generated with the so-called Kalman filter Barrel Muon Track Finder 
(K-BMTF), which uses a Kalman filter based reconstruction algorithm that will be deployed for LHC Run 3 . 
Table 2 shows the details of all the reconstructed variables contained in the dataset. Only three of them, 
namely ptReco, etaVtxReco and phiVtxReco are used as targets for the muon re-calibration problem. 

Figure 4 – CMS coordinate system. Credits: [13] 
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Table 3 – Variable specifications for the reconstructed muon track parameters 

Name Description Dtype Range 
ptReco reconstructed transverse momentum float [0, 255] GeV 

etaExtRecoSt1 reconstructed pseudorapidity (Extrapolated to Station 1) float [−2.45;  2.45] 

phiExtRecoSt1 reconstructed azimuthal angle (Extrapolated to Station 1) float [−𝜋𝜋;  𝜋𝜋] rad 

etaVtxReco reconstructed pseudorapidity (Vertex) float [−2.45;  2.45] 

phiVtxReco reconstructed azimuthal angle (Vertex) float [−𝜋𝜋;  𝜋𝜋] rad 

dXYReco reconstructed collision point XY distance float - 

chargeReco reconstructed particle charge int64 −1,1 

Each muon has previously been matched to reconstructed values. L1 measurements corresponding to 
unmatched muons are reported in specific columns, whose labels contain the original feature name followed 
by the ‘Unmatched’ keyword. As a result, only a fraction of muons per row (described by the variable 
nMatchedMuons) have a corresponding match. The reconstructed values of unmatched muons are zero-
padded (values set to zero). 

The muon re-calibration problem consists of correcting the L1 measurements in order to match the offline 
reconstructed values. Starting from the original dataset, a new dataset has been generated in order to retain 
only the relevant measurements for the muon re-calibration problem. For each matched muon, a single 
independent row is created into the new dataset containing its four L1 measurements along with the three 
corresponding reconstructed values (ptReco, etaVtxReco, phiVtxReco). The new dataset contains 
1 336 160 rows. 

The distributions of the L1 measurements (Global Muon Trigger) versus the offline reconstructed values in 
the resulting dataset are reported in Figure 5. As can be seen from the upper row, the distributions of ϕ and 
𝜂𝜂 present a few different peaks, whereas the distribution of 𝑝𝑝𝑇𝑇 presents a difference over the tail. In the 

Figure 5 – Two different visualisation of the distributions of L1 measurements vs offline reconstructed values 
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second row, 2D histograms give a more detailed view of how the divergence of single values is distributed 
across the features range. The histogram of 𝜂𝜂 is the only one which more closely resembles a straight line 
(i.e., the ideal outcome). The double band in the histogram of ϕ is explained by the fact that differently 
charged muons are bent in opposite directions by the magnetic field. In the histogram of 𝑝𝑝𝑇𝑇,  the majority of 
the points are concentrated around zero, with the remaining ones mainly scattered along the two axes. 

b. Jets 

Jet track parameters have been collected from a preprocessed version of the ZeroBias (ZB) dataset with 
Charged Hadron Subtraction applied [8]. The structure of the dataset is similar to the one described in the 
previous section. Each row contains up to twelve L1 jet measurements, with each jet represented by three 
features. The specifications of jet features are reported in Table 4. Each row also contains 140 reconstructed 
values (denoted by PF in the column names, which stands for Particle Flow, which is the name of the 
algorithm used for reconstruction [13]). 

Table 4 – L1 jet measurement specifications 

Name Description Dtype Range Bin width Min-Max 
hwPt transverse momentum int64 [0; 211 − 1] 0.5 GeV [0;  1023] GeV 

hwEta pseudorapidity int64 [−27; 27 − 1] 0.0870/2 = 0.0435 [−5;  5] 

hwPhi azimuthal angle int64 [0; 28 − 1] 2𝜋𝜋/144 ∼ 0.044 rad [0;  2𝜋𝜋] rad 

The following procedure was applied to match L1 measurements to reconstructed values: 

1. For each reconstructed - L1 measurement pair compute Δ𝑅𝑅 =  �Δ𝜙𝜙2 + Δ𝜂𝜂2 
2. Each reconstructed jet is matched to the L1 jet corresponding to the minimum Δ𝑅𝑅 value as long as 

that minimum is below a threshold Δ𝑅𝑅 < 0.4 
3. Each L1 jet is allowed to be matched to multiple reconstructed jets 

Figure 6 shows the distributions of the offline reconstructed values 𝜙𝜙, 𝜂𝜂, 𝑝𝑝𝑇𝑇 of matched versus unmatched 
jets. It can be seen that a lot of the unmatched reconstructed jets are at high |𝜂𝜂|, whereas the reconstructed 
jets that have high 𝑝𝑝𝑇𝑇 are mostly matched. 

 

The same matching procedure has also been applied to a subset of the dataset, determined by a preliminary 
cut |𝜂𝜂| < 3. Quantitative results for both datasets are reported in Table 5. As confirmed by the previous plot, 
the number of unmatched jets significantly decreases when the cut |𝜂𝜂| < 3 is applied. The last column 
contains the percentage of matched 𝑝𝑝𝑇𝑇, i.e., the ratio between the sum of 𝑝𝑝𝑇𝑇 of all the matched jets and the 
sum of 𝑝𝑝𝑇𝑇 of all the reconstructed jets. 

Figure 6 – Offline reconstructed (‘reco’) values: matched vs unmatched jets 
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Table 5 – Quantitative results of the jet matching procedure 

 

 
Number of matched jets Number of 

unmatched jets 
Percentage of 
matched jets Percentage of matched 𝑝𝑝𝑇𝑇  

No cut 1 383 135 35 546 552 3.75 % 5.47 % 

|𝜂𝜂| < 3 1 278 076 865 802 59.62 % 61.52 % 

The jet re-calibration problem consists of correcting the L1 𝑝𝑝𝑇𝑇 measurement in order to approximate the 
sum of the matched reconstructed 𝑝𝑝𝑇𝑇. Starting from the original dataset, a new one has been generated in 
order to retain only relevant information for the jet re-calibration problem.  For each L1 jet and its 
corresponding matched reconstructed jets, a single independent row is created into the new dataset 
containing the three L1 measurements along with the sum of the reconstructed 𝑝𝑝𝑇𝑇. The new dataset contains 
1 234 480 rows. 

Figure 7 shows a qualitative analysis of the outcome of the 𝑝𝑝𝑇𝑇  matching procedure. On the top left panel it 
is possible to observe that the distribution of the matched 𝑝𝑝𝑇𝑇 closely follows the distribution of the L1 
measurements. The histogram on the top right panel shows that most of the matched values are 
concentrated at around 𝑝𝑝𝑇𝑇 < 20 GeV. On the bottom left plot, the distribution of the residuals between the 
L1 measurements and the reconstructed value is shown having a bell-shaped curve around zero and a 
reported root mean square error of 1.102. The last plot on the bottom right shows that most of the L1 jets 
are matched to just one reconstructed jet, whereas a smaller quantity is matched to a couple of 
reconstructed jets. Only a few L1 jets are matched to three reconstructed jets. 

 

Figure 7 - Analysis of the outcome of the 𝑝𝑝𝑇𝑇 matching procedure 
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3. MACHINE LEARNING MODELS 

Machine learning is the study of computer algorithms that allow computer programs to automatically improve 
through experience [9]. Supervised learning is a class of machine learning problems whose goal is to find 
an input-output relation 

𝑓𝑓:𝑋𝑋 → 𝑌𝑌 

given examples from a training set 𝐷𝐷 = {(𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛)} such that it can be generalized to any new data 
point.   

The problem of particle track re-calibration presented in this project can be formally described as a 
multivariate regression problem, i.e. 

• the input space is ℝ𝐷𝐷, with 𝐷𝐷 being the number of input track parameters 
• the output space is ℝ𝑇𝑇, with 𝑇𝑇 being the number of parameters to be re-calibrated 

The solution 𝑓𝑓 is computed by finding an approximate solution to 

arg min
𝑓𝑓
�ℓ(𝑓𝑓(𝑥𝑥𝑖𝑖),𝑦𝑦𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

by means of iterative methods based on the gradient of a loss function ℓ which measures the approximation 
error. 

In the following sections, two different machine learning models are briefly presented with a preliminary 
analysis on the approximate number of operations required at inference time. 

c. NEURAL NETWORKS 

Neural networks are machine learning models which are loosely inspired by information processing in the 
human brain.  A neural network is composed by a set of layers, called hidden layers, composed of a certain 
number of computational units, called neurons. Each layer takes as input the output of the previous layer 
and transforms it by a function 

ℎ = 𝑔𝑔(𝑊𝑊𝑥𝑥 + 𝑏𝑏) 

where 𝑥𝑥 is the input, 𝑔𝑔 is a non-linear activation function, 𝑊𝑊 is a matrix of weights and 𝑏𝑏 is an array of biases. 

Starting from raw data, neural networks can extract efficient intermediate representations and approximate 
any function of "arbitrary" complexity [10]. 

Figure 8 shows a schematic representation of the composition of hidden layers as matrix multiplications. 
The approximated number of operations required at inference time is: 

Ο(𝑆𝑆𝐻𝐻𝑛𝑛(𝐷𝐷 + 𝑁𝑁𝑙𝑙𝐻𝐻𝑛𝑛 + 𝑇𝑇)) 

where 𝑆𝑆 is the number of input points, 𝑁𝑁𝑙𝑙  is the number of hidden layers, 𝐻𝐻𝑛𝑛 is the number of neurons per 
layer, 𝐷𝐷 and 𝑇𝑇 are the input and output dimensionality, respectively. 
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d. FALKON 

Falkon is a fast, efficient large-scale kernel method developed at MaLGa Center, Genoa [11]. The 
approximated function is  

 

𝑓𝑓(𝑥𝑥) =  �𝛼𝛼𝑖𝑖  𝑘𝑘(𝑥𝑥,𝑥𝑥𝑖𝑖)
𝑀𝑀

𝑖𝑖=1

 

where 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) is a kernel function which acts as a similarity measure between input points, 𝛼𝛼𝑖𝑖 are a set of 
learned coefficients, 𝑀𝑀 is the number of Nystrom centers which constitute an arbitrary subset of the training 
data. 

The function 𝑓𝑓 is computed by solving a kernel ridge regression problem. The algorithm is optimized for 
GPUs and makes use of several techniques, namely Nystrom approximation, conjugate gradient, and 
preconditioning to compute a fast iterative solution. 

Figure 9 shows the inference operation required by Falkon. It is mainly a matrix multiplication between the 
kernel matrix 𝐾𝐾𝑆𝑆𝑀𝑀 – that is the matrix containing the kernel function computed between the 𝑆𝑆 input points 
and the 𝑀𝑀 Nystrom centers – and the matrix of learned coefficients 𝐴𝐴. 𝑇𝑇 denotes the output dimensionality. 

The approximate number of operations required at inference time is thus: 

Ο(𝑆𝑆𝑀𝑀𝑇𝑇) +  number of kernel operations 

 

Figure 8 – Schematic representation of the inference operations required by a neural network 

Figure 9 - Inference operation required by Falkon 
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4. EXPERIMENTS AND RESULTS 

In the following sections, details of the experiments on the re-calibration of the L1 trigger parameters are 
reported. The two machine learning models described above are trained to predict a correction to be applied 
to the L1 measurements, in order to have a more precise value in the future L1 scouting system.  

Muon or jet track parameters from real data are used as training inputs. The differences between L1 
measurements and offline reconstructed values are used as targets, defined as follows: 

Δ𝑝𝑝𝑇𝑇 =  𝑝𝑝𝑇𝑇pred − 𝑝𝑝𝑇𝑇reco 

Δ𝜂𝜂 =  𝜂𝜂pred −  𝜂𝜂reco 

Δ𝜙𝜙 = �
𝜙𝜙pred −  𝜙𝜙reco − 2𝜋𝜋, 𝜙𝜙pred −  𝜙𝜙reco > 𝜋𝜋
𝜙𝜙pred −  𝜙𝜙reco + 2𝜋𝜋, 𝜙𝜙pred −  𝜙𝜙reco < −𝜋𝜋

𝜙𝜙pred −  𝜙𝜙reco, otherwise 
 

a. MUON RE-CALIBRATION 

Data pre-processing. The dataset for muon re-calibration described in section 2.a has been processed as 
follows: 

• Duplicates have been discarded (i.e., rows having the same values for all the variables) 
• L1 integer parameters (ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1, ℎ𝑤𝑤𝑤𝑤ℎ𝑖𝑖𝑤𝑤1, ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1) have been multiplied by their corresponding 

bin widths in order the values in physical units. 
• A filter based on the measured transverse momentum has been applied: only muons with 5.5 <

 ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤1 <  45 GeV are considered for further analysis. 
• The offline reconstructed azimuthal angle (𝑝𝑝ℎ𝑖𝑖𝑖𝑖𝑤𝑤𝑥𝑥𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) has been rescaled to the interval [0;  2𝜋𝜋] in 

order to match the range of the L1 measurements. 

Figure 10 shows an input-output diagram for the muon re-calibration problem. 

The dataset has been randomly split into training, validation and test set, with 65-20-15% of the data in each 
set, respectively. A 0-1 normalization has been applied to the features, whereas a standard scaling has 
been applied to the targets.  

Figure 10 – Input-output diagram for the muon re-calibration problem 
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Neural networks. Different neural network models have been trained with TensorFlow [12]. Each neural 
network is composed of 𝑁𝑁𝑙𝑙 hidden layers made of repeated building blocks, namely a dense layer with a 
constant number 𝐻𝐻𝑛𝑛 of neurons, a batch normalization layer and a ReLU activation function. Concerning the 
learning procedure, the Adam optimizer has been used with default parameters and different batch sizes 
(256, 512, 8192). The early stopping method has been employed to avoid overfitting. 

Table 6 – List of tested neural network models 

Model ID Loss function Regularization Number of hidden 
layers 𝑁𝑁𝑙𝑙 

Number of neurons per 
hidden layer 𝐻𝐻𝑛𝑛 

1 MSE  - 4 128 
2 MSE 10−5 4 128 
3 Logcosh - 4 128 
4 Logcosh 10−5 4 128 
6 MSE - 3 32 
7 MSE 10−5 3 32 
8 Logcosh - 3 32 
9 Logcosh 10−5 3 32 

Figure 11 shows the results of the best neural network model, identified by ID 4 in the previous table. 

Figure 11 – Results of muon re-calibration with the best neural network model 
 GMT = Global Muon Trigger, NN = Neural network, rmse = root mean square error 
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The first row shows the residuals between L1 measurements and offline reconstructed values. A remarkable 
improvement can be observed in Δ𝜙𝜙 and Δ𝑝𝑝𝑇𝑇, with the curve being clearly shifted around zero. A slight 
improvement can also be observed in Δ𝜂𝜂. These results are confirmed by the 2D histograms on the second 
row, which appear improved compared to the ones in Figure 5. Finally, on the third row the distributions of 
the L1 measurements (Global Muon Trigger), the predicted variables and the offline reconstructed values 
are shown.  

Falkon. Different kernels functions have been tested with several combination of hyperparameters and 
random Nystrom centers selection: 

• Gaussian kernel: 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) = exp �||(𝑥𝑥−𝑥𝑥𝑖𝑖)||2

2𝜎𝜎2
� 

• Linear kernel: 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝛽𝛽 + 1
𝜎𝜎2
𝑥𝑥𝑇𝑇𝑥𝑥𝑖𝑖 

• Polynomial kernel: 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (𝛼𝛼𝑥𝑥𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽)degree  

Figure 12 shows the tuning curves for the Gaussian kernel. By fixing two parameters, it is possible to see, 
in turn, how the third one affects the accuracy of the re-calibration and consequently choose the best 
combination that minimizes the root mean square error. 

Figure 12 shows the effect of increasing the parameter 𝑀𝑀 with linear and polynomial kernels. All the three 
curves are stable for 𝑀𝑀 > 100.  

As discussed in the section 2.d, the parameter M plays a crucial role in the number of operations required 
at inference time. The tuning curves reported before show that all the three kernels can produce good results 
with a relatively low M (compared to other applications [10]). 

Qualitative results obtained with the best combination of hyperparameters for all three kernels are very 
similar to the ones shown in Figure 11. 

Figure 12 – Hyperparameter tuning with the Gaussian kernel 

Figure 13 - Tuning the parameter M with (left) Linear kernel, (right) Polynomial kernel 
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Numerical results. Table 7 shows the Root Mean Square Error (RMSE) of the re-calibrated muon track 
parameters with respect to the offline reconstructed values. It is possible to notice that all the machine 
learning models provide a similar improvement compared to the Global Muon Trigger (GMT), whose error 
is reported in the first row.   

Table 7 – Performance of the ML models compared to the Global Muon Trigger (GMT) 

 𝜙𝜙 𝜂𝜂 𝑝𝑝𝑇𝑇/𝑝𝑝𝑇𝑇reco 

GMT 0.499 0.032 0.493 

Neural network: 128x4 0.136 0.030 0.259 

Neural network: 32x3 0.136 0.030 0.274 

Falkon with Gaussian 
kernel: M=500 0.136 0.030 0.270 

Falkon with Gaussian 
kernel: M=100 0.137 0.030 0.304 

Falkon with Linear 
kernel: M=100 0.173 0.031 0.288 

Falkon with Polynomial 
kernel: M=100, deg=5 0.138 0.030 0.272 

 

A computation of the approximate number of operations per inference is reported in Table 8. Using Falkon 
with the linear kernel has the benefit of reducing by orders of magnitudes the number of floating-point 
operations (flops) required - compared to the two neural network models. 

Table 8 – Approximated number of floating-point operations (flops) per inference 

 Approx. flops 
(per inference) 

Neural Network 
128x4 66 432 

Neural Network 
32x3 3296 

Falkon 
M=500 2000 

Falkon 
M=100 300 
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b. JET RE-CALIBRATION 

The dataset for jet re-calibration described in section 2a has been used to conduct preliminary tests with 
both machine learning models described so far. Figure 15 shows on the left the input-output scheme for the 
jet re-calibration problem, on the right an example of results obtained with the neural network model denoted 
by ID 6 in Table 4. The 𝑝𝑝𝑇𝑇 reconstruction looks improved, with the Root Mean Square Error reduced from 
1.102 to 0.52. This is an encouraging result which suggests that after further investigations the method 
could be efficiently extended to calorimeter data. 

5. CONCLUSIONS & FUTURE WORK 

Neural networks and Falkon are two different Machine Learning methods which have potential for future 
use within the CMS L1 scouting system. Several tests have shown that they can be efficiently employed for 
the re-calibration of muon track measurements provided by the L1 trigger. With carefully selected 
parameters, Falkon can preserve accuracy and provide advantages in terms of inference time – a crucial 
aspect needed to meet strict latency requirements of the L1 scouting system. 

The results of muon re-calibration can be easily extended to calorimeter data. Preliminary tests have shown 
encouraging results with both ML models for improvement in jet transverse momentum. Furthermore, for 
both neural networks and Falkon there is also the possibility to implement more refined strategies in the 
training procedure which can be used to give more importance to rare particles, crucially important areas of 
phase space for physics studies.  

Figure 14 – (Left) Input-output scheme of the jet re-calibration problem, (Right) Preliminary results 
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