

Intro to High-Performance
Computing with GPUs

CERN openlab Summer Student Programme 2021

Ahmad Hesam
19/07/2021

Questions during the lecture?

About Me

➢ Bachelor’s Applied Physics

➢ Master’s Computer Engineering

Joined CERN as Openlab Summer Student

➢ Research Fellow (currently)

Openlab Summer Programme 2016

Summer Student Project

➢ Agent-based simulation platform
(BioDynaMo)

➢ Integrated ROOT I/O for back-up & restore

Lightning talk winner :-D

Technical Studentship → Fellow

➢ Continued on the same
project as a Technical
Student
– Implemented visualization
– More ROOT
– Mainly: GPU & FPGA

 acceleration
➢ Continued as a Fellow

– Even more ROOT
– (Heterogeneous) distributed runtime

– More on BioDynaMo coming Friday! –

Today’s Talk

➢ What are GPUs?

➢ Why do we need them (at CERN)?

➢ How do we program them?

➢ Hands-on session

https://www.hpcwire.com/2018/03/27/n
vidia-riding-high-as-gpu-workloads-an
d-capabilities-soar/

https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/
https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/
https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/

What are GPUs?

➢ Graphics Processing Units

➢ Name from the ‘old days’ when
only used for graphics processing

➢ Increasingly more powerful

→ General-purpose use cases
 were coming up

➢ Offloading computational intensive
workloads to GPUs

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/

How do GPUs compare against CPUs?

GPU vs CPU

https://www.youtube.com/watch?v=-P28LKWTzrI

A short, but convincing, demonstration...

https://www.youtube.com/watch?v=-P28LKWTzrI

GPU vs CPU

● Out of order execution
● Few fast cores (~3 GHz)

● In order execution
● Many slower cores (~1 GHz)

For certain workloads, GPUs can outperform a small CPU-only cluster!

GPU vs CPU: Deep Learning

1 Gb/s
Ethernet

100 Gb/s
Infiniband

 CERN
LAN

1x IBM SC821LC (login node)
- 1x POWER8 socket (=8 cores)
- 64 GB DDR4

3x IBM SC822LC (worker nodes)
- 2x POWER8 sockets (=16 cores)
- 4x NVIDIA P100 GPUs
- CPU ↔ GPU NVLink
- 256GB DDR4

Delivered roughly the same
performance as a 256-CPU cluster!

+
~10X more energy-efficient

Use case: distributed training in deep learning

GPU Computing Basics

CPU
memory

CPU
cores

Matrix

GPU
memory

GPU
cores

Matrix

1

3

2

Computation is offloaded to the GPU in three steps:

1. CPU → GPU data transfer
2. GPU kernel execution
3. GPU → CPU data transfer

● Overhead
● Potential bottleneck

Credits: https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pdf

Why?

Why do we need GPUs?
➢ Reaching physics limits for CPUs

➢ Multi-core era started nearly 2 decades ago

➢ Massively many-core era is the now
(stock prices don’t lie)

➢ Heterogeneous computing
➢ At CERN

• Trigger, reconstruction, simulation, analysis
• High Lumi

Nvidia’s stock price has risen 1,900% over the
past 5 years (data from 2018)

https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/

How do we program GPUs?

SAXPY

Single-Precision A*X Plus Y

Regular C implementation of saxpy

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Libraries

Saxpy with CUBLAS library

Many popular frameworks with a GPU back-end rely on CUDA
libraries:

- Deep Learning: Tensorflow, Keras, PyTorch

- Molecular Dynamics: NAMD, LAMMPS

- General Scientific Libraries: MATLAB, R

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Compiler Directives

Saxpy with OpenACC

Goal: insert directives into existing code base, without changing the code

+ Very simple in use
- Increasingly more difficult to use in more complex (or messier) codebases

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Low-Level APIs

Saxpy with CUDA

CPU
memory

CPU
cores

Matrix

GPU
memory

GPU
cores

Matrix

1

3

2

● Steepest learning
curve of all methods

● Often most rewarding

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

• High-performance open-source ABS

platform

• Written in C++

• Multi-threading with OpenMP

• Modular architecture

• Collaboration project at CERN

• https://biodynamo.org

https://doi.org/10.1101/2020.06.08.139949

BioDynaMo

https://biodynamo.org/

Accelerating BioDynaMo with GPUs

• CUDA
• OpenCL

87%

Runtime
Profile

Accelerating BioDynaMo with GPUs

GPU: Nvidia GTX1080 Ti

Intel Integrated GPU

Intel Graphics Technology (GT) : Integrated GPUs!

https://software.intel.com/en-us/forums/opencl/topic/541290

● CPU and GPU on
same die

● Share same DRAM

● Often less powerful
than dedicated GPUs

● Supports OpenCL for
programming the GPU

https://software.intel.com/en-us/forums/opencl/topic/541290

OpenCL: Open Computing Language

➢ Framework to program on heterogeneous
platform (CPU, GPU, DSP, FPGA…)

__kernel void saxpy(float a, __global float* X,
__global float* Y) {

 const int i = get_global_id(0);
 Y[i] += a * X[i];
}

Compilation /
High-Level Synthesis

CPU GPU FPGA DSP

OpenCL: Open Computing Language

Source: https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf

If you look closely this is CUDA, but it’s conceptually the same as OpenCL

Saxpy on GPU
...with OpenCL

Setup OpenCL environment

Initialize vectors X and Y

Create GPU buffers Create GPU Buffers

Copy X,Y to GPU

Wait for GPU to finish

CPU GPUOpenCL

Copy X,Y to GPU

Read result vector Z

Verify correctness of Z

Run SAXPY on GPU

Read result vector Z

tim
e

How to capitalize
on that?

O
pe

nC
L

ca
lls

How to improve?
X

Y

Z

0 N - 1

CPU

X, Y
, Z

GPU saxpy

__kernel void saxpy(float a, __global float* X,
__global float* Y) {

 const int i = get_global_id(0);
 Y[i] += a * X[i];
}

On My Machine

On my machine GPU is about as fast as my CPU for saxpy

On Another Machine

On another machine the GPU is much faster than the CPU for saxpy

Heterogeneous Execution

X

Y

Z

0 N - 1
50% 50%

SAXPY on GPU SAXPY on CPU

Heterogeneous

I want you to observe:

And no, this is not a valid solution:

cout << “CPU execution time = 59.187 ms” << endl;
cout << “GPU execution time = 63.403 ms” << endl;

heterogeneous

runtime

GPU-only runtime

Operating System Survey

OSs of Summer Students 2019

Quite a spread usage of operating systems

~75% managed to get it to work

Why does the OS even matter?

Mac OS: the only OS that comes with
 OpenCL pre-installed

Linux: does not come with OCL pre-installed

Windows: - Virtual environment cuts off access
 to (integrated) GPU
 - Upcoming support for native Linux
 subsystem
 - Possible to run natively, but not
 tested!

Hands-On Session

Current setup

OS X: run natively

Linux: run in Docker container (useful
commands in the course materials!)

Windows: look for someone with Linux / OSX
or run natively if you dare...

https://github.com/Senui/saxpy-benchmark/

Code available at (already in docker container):

(forked repo)

NB: Make sure the source files are up to date!

Linux: docker pull ahesam/intro-gpu
OS X : git pull

https://github.com/Senui/saxpy-benchmark/

Demo Docker setup

Hands-On Session

Go through the code and understand it by
reading the comments:

saxpy-benchmark/src/saxpy_ocl1_hg.cpp

OpenCL API: https://github.khronos.org/OpenCL-CLHPP/

Exercise: Heterogeneous Runtime
Edit the file such that:

- Half of the computation on GPU
- Other half on CPU
- Add timer for CPU execution (GPU timer already there)
- Error stays 0

Follow-up exercise (if time permits):
Profile the time it takes for data transfers (CPU → GPU, and GPU → CPU),
And compare them against the execution times

Q: Are they what you expect? Why (not)?
Q: How could you effectively ‘hide’ the data transfers?
Q: How would your observations differ with a dedicated GPU?

Useful Commands

● The source files can be found in:

saxpy-benchmark/src

● You will only need to edit: saxpy_ocl1_hg.cpp
● To compile your program simply run make
● To run your program run:

./saxpy_ocl1_hg
in the src directory

QUESTIONS?

Problems
➢ ERROR: clGetPlatformIDs(code: -1001)

➢ Most likely because you have an older Intel CPU
that is not supported with OpenCL

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

