=%1. CERN
1= openlab

Intro to High-Performance
Computing with GPUs

CERN openlab Summer Student Programme 2021

Ahmad Hesam

19/07/2021

Questions during the lecture?

About Me P
TUDelft

> Bachelor’s Applied Physics

¢ > Master’s Computer Engineering

»| Joined CERN as Openlab Summer Student

> Research Fellow (currently)

Openlab Summer Programme 2016

-
-
-
-
-

Summer Student Project

> Agent-based simulation platform
(BioDynaMo)

> Integrated ROQOT /O for back-up & restore

Lightning talk winner :-D

Technical Studentship - Fellow

> Continued on the same
project as a Technical

UG-method (20 threads)
Stu d e nt GPU First Version
GPU Improvement I

GPU Improvement II

- Implemented visualization o e

— More ROOT FEZiAIImpL;vem;itIi 1

- Mainly: GPU & FPGA [
acceleration

> Continued as a Fellow
- Even more ROOT
- (Heterogeneous) distributed runtime

— More on BioDynaMo coming Friday! —

Today’s Talk

> What are GPUs?
> Why do we need them (at CERN)?
> How do we program them?

> Hands-on session

https://www.hpcwire.com/2018/03/27/n
vidia-riding-high-as-gpu-workloads-an
d-capabilities-soar/

https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/
https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/
https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/

What are GPUs?

Theoretical Peak Performance, Single Precision

Graphics Processing Units

Name from the ‘old days’ when
only used for graphics processing

10°

GFLOP/

Increasingly more powerful

— General-purpose use cases

INTEL Xeon CPUs ==l -]

107 p-- : S . ‘
1 & o & : ! NVIDIA GeForce GPUs —Jil—
Were C0m|ng up AMD Radeon GPUs —{—
' ' ' INTEL Xeon Phis -
2008 2010 2012 2014 2016
Oﬁl d 1 1 I ' 1 End of Year
oading computational intensive .
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
WO rkl Oad S to G P U S characteristics-over-time/

How do GPUs compare against CPUs?

GPU vs CPU

A short, but convincing, demonstration...

https://www.youtube.com/watch?v=-P28LKWTzrl

https://www.youtube.com/watch?v=-P28LKWTzrI

GPU vs CPU

CPU GPU

« Out of order execution * In order execution
* Few fast cores (~3 GHz) * Many slower cores (~1 GHz)

For certain workloads, GPUs can outperform a small CPU-only cluster!

GPU vs CPU: Deep Learning

1x IBM SC821LC (login node)
- 1x POWERS socket (=8 cores)
- 64 GB DDR4

3x IBM SC822LC (worker nodes)
- 2x POWERS sockets (=16 cores)
- 4x NVIDIA P100 GPUs
- CPU «~ GPU NVLink
- 256GB DDR4

Delivered roughly the same

performance as a 256-CPU cluster!
+

~10X more energy-efficient

Use case: distributed training in deep learning

GPU Computing Basics

Computation is offloaded to the GPU in three steps:

1. CPU - GPU data transfer -
2. GPU kernel execution e
3. GPU - CPU data transfer = orentialbotenee

L Why?

Credits: https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=onur-comparch-fall2017-lecture14-afterlecture.pdf

Why do we need GPUs?

> Reaching physics limits for CPUs
> Multi-core era started nearly 2 decades ago

> Massively many-core era Is the now
(stock prices don't lie)

> Heterogeneous computing

> At CERN

* Trigger, reconstruction, simulation, analysis
* High Lumi

Nvidia’s stock price has risen 1,900% over the
past 5 years (data from 2018)

https://www.hpcwire.com/2018/03/27/nvidia-riding-high-as-gpu-workloads-and-capabilities-soar/

How do we program GPUs?

Easy
< Fase of use
Best
Attainable performance >
Libraries Compiler directives Low-level APIs
* NVIDA Libraries * OpenACC « CUDA
» cuBlas, cuSolver, etc * OpenMP OpenCL
 ESSL / PESSL
+ Easy to implement + Modification of existing + Achieves highest
+ Well-tested and programs with directives performance results
community support - Requires knowledge on . Most time intensive

- Limited functionality data structures - Requires expertise

SAXPY

Single-Precision A*X Plus Y

Z=ax +Yy

X,Y,Z: vector
a : scalar

volid saxpy(int n, float a, float * restrict x, float * restrict y)

{
for (int 1 = 0; i < n; ++1)
y[i] = a*x[1i] + y[i];

}

// Perform SAXPY on 1M elements
saxpy(1l<<20, 2.0, x, y);

Regular C implementation of saxpy

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Libraries

Many popular frameworks with a GPU back-end rely on CUDA
libraries:

- Deep Learning: Tensorflow, Keras, PyTorch
- Molecular Dynamics: NAMD, LAMMPS
- General Scientific Libraries: MATLAB, R

int N = 1<<20;
cublasInit();
cublasSetVector(N, sizeof(x[0]), x, 1,

1, d x, 1);
cublasSetVector(N, sizeof(y[0]), vy, 1, d

X
y, 1);

// Perform SAXPY on 1M elements
cublasSaxpy(N, 2.0, d x, 1, dy, 1);

cublasGetVector(N, sizeof(y[0]), dy, 1, vy, 1);
cublasShutdown () ;

Saxpy with CUBLAS library

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Compiler Directives

Goal: insert directives into existing code base, without changing the code

+ Very simple in use
- Increasingly more difficult to use in more complex (or messier) codebases

void saxpy(int n, float a, float * restrict x, float * restrict y)

{

#pragma acc kernels
for (int 1 = 0; 1 < n; ++1)
y[i] = a*x[1] + y[1];

// Perform SAXPY on 1M elements
saxpy(1l<<20, 2.0, X, Y);

Saxpy with OpenACC

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

Using Low-Level APIs

~ _global
void saxpy(int n, float a, float * restrict x, float * restrict vy)

{

int i = blockIdx.x*blockDim.x + threadIdx.X;
if (1 < n) y[i] = a*x[1i] + y[i];
} * Steepest learning
curve of all methods
int N = 1<<20;
cudaMemcpy(d x, x, N, cudaMemcpyHostToDevice); e Often most rewarding
cudaMemcpy(d y, y, N, cudaMemcpyHostToDevice) ;

// Perform SAXPY on 1M elements
saxpy<<<4096,256>>>(N, 2.0, d x, d y);

cudaMemcpy(y, d y, N, cudaMemcpyDeviceToHost);

Saxpy with CUDA

https://devblogs.nvidia.com/six-ways-saxpy/

https://devblogs.nvidia.com/six-ways-saxpy/

BioDynaMo

High-performance open-source ABS
platform

Written in C++

Multi-threading with OpenMP
Modular architecture

Collaboration project at CERN

https://biodynamo.org

https://doi.org/10.1101/2020.06.08.139949

https://biodynamo.org/

Accelerating BioDynaMo with GPUs

®
v

Initialize > Visualize >

Update . : Biology
Neighbors —>| Diffusion = Modules

. I

Yes
O @ Commit <« Backup <« Physics

Download Upload
Input Data Results

mm Mech. Force Comp. (51%)
Runtime B Neighborhood (36%) [GPU J
Profile = Cell Division (2%)

E Remainder (11%)

 CUDA

L J

Y

87%

Accelerating BioDynaMo with GPUs

Baseline (serial)
Baseline (20 threads)
UG-method (serial)
UG-method (20 threads)
GPU Version 0

GPU Version 1

GPU Version 11

GPU Version 111

25817
8226
14497

274

I Ll Ll |
103 10*
Runtime (ms)

10°

102

Fig. 8: The runtime for various implementations of the me-
chanical interaction operation running benchmark A. The GPU
results are obtained from the CUDA runtime on system A.

GPU: Nvidia GTX1080 Ti

Baseline (serial) |-1
Baseline (20 threads)
UG-method (serial)
UG-method (20 threads)
GPU Version 0

GPU Version 1

GPU Version 11

GPU Version II1

130
94
1 Lol Ll L 11 el
10 102 10°
Speedup

10

Fig. 9: The speedup with respect to the serial baseline version
as obtained with benchmark A. The GPU results are obtained
from the CUDA runtime on system A.

Intel Integrated GPU

Intel Graphics Technology (GT) : Integrated GPUS!

!i @ Compute architecture of Intel® Processor Graphics Gen8 |
| Each EU: |

e CPU and GPU on
same die

» Share same DRAM -

ii Each Subslice:

* Often less powerful
than dedicated GPUs

Shared

Local Mem
64KB/subslice

* Supports OpenCL for = [swemmc i
programming the GPU |

__

https://software.intel.com/en-us/forums/opencl/topic/541290

https://software.intel.com/en-us/forums/opencl/topic/541290

OpenCL: Open Computing Language

> Framework to program on heterogeneous
platform (CPU, GPU, DSP, FPGA...)

_ _kernel void saxpy (float a, _ _global float* X,
_ _global float* Y) {
const int i1 = get_global_id(0);
Y[i] += a * X[i];
}

OpenCL: Open Computing Language

sid;
#deding 1024
#defire RADIUS 3
#define BLOCK_SIZE 16

(int “in, int *out) {
mp[ELOCK_SIZE + 2 * RADILIS]
Kide.x * blogkDim.x,

jex - RADIUS] = infgindex - RADIUS];
mpflindez + BLOCK._SIZE] = infgindex + BLOCK_SIZE]

device code A parallel function

ADIUS ; oifset <= RADIUS ; offsete+)
templindex + offsel]:

+ serial function

serial code
host code

ize, cudsMemcpyHostToDevica)
e yHoSITaDs

TEminch s }-c.)lc::js\l-.zED.;E&JK__B\ZE::»;_u in + RADILS, d_out + RADIUS): } pa ra l le l Cod/
e | serial code

i

Source: https://www.nvidia.com/docs/I0/116711/sc11-cuda-c-basics.pdf

If you look closely this is CUDA, but it's conceptually the same as OpenCL

Saxpy on GPU oy

X,Y,Z: vector
a : scalar

...with OpenCL
CPU OpenCL GPU
)
£ Setup OpenCL environment
Initialize vectors X and Y
Y

Create GPU buffers Create GPU Buffers
Copy X,Y to GPU Copy X,Y to GPU

Run SAXPY on GPU

i Read result vector Z Read result vector Z

How to capitalize
on that? Verify correctness of Z

How to improve?

<
o
Z |||

N

__global float* Y)
const int i1 = get_global_id(0);
Y[i] += a * X[i];

{

_ _kernel void saxpy (float a, _ _global float* X,

CPU

SLE

On My Machine

ahmad@ahmad:~/saxpy-benchmark/src$./saxpy ocll
Platform "Intel(R) OpenCL". Devices:
- [gpu] Intel(R) Corporation: Intel(R) HD Graphics
(Max compute units: 23, max work group size: 256)
- [cpu] Intel(R) Corporation: Intel(R) Core(TM) 1i7-7
(Max compute units: 4, max work group size: 8192)

Using Intel(R) Corpgtation Intel (R HD Graphics
GPU execution time(is: 61.759 ms
Errors: 0

ahmad@ahmad : ~/saxpy-bencimarieisrc$./saxpy cpu
: 67108864
PU execution time 57.8496 ms
rrors: 0

On my machine GPU is about as fast as my CPU for saxpy

On Another Machine

ahhesam@tlab-gpu-gtx1080t1-09:~/saxpy-benchmark/src$./saxpy ocll
Platform "NVIDIA CUDA". Devices:
- [gpu] NVIDIA Corporation: GeForce GTX 1080 Ti
(Max compute units: 28, max work group size: 1024)

Using NVIDIA CorporadioimrGererce GTX 1080 Ti

GPU execution time = 2.238 ms

Errors: 8

ahhesam@tlab-gpu-gtx1080t1-09:~/saxpy-benchmark/src$./saxpy_cpu
N: 67108864

CPU execution timel= 56.7027 ms

Errors: 0O

On another machine the GPU is much faster than the CPU for saxpy

Heterogeneous Execution

SAXPY on GPU SAXPY on CPU '
1
:
1
Heterogeneous {

| want you to observe:

ahmad@ahmad:~/saxpy-benchmark/src$ —/fsax
Platform "Intel(R) OpenCL". Devices:
- [gpu] Intel(R) Corporation: Intel(R) HD Graphics
(Max compute units: 23, max work group size: 256)
- [cpu] Intel(R) Corporation: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
(Max compute units: 4, max work group size: 8192)

Using Intel(R) Corporation Intel({R) HD Graphics

GPU execution time = 121.896 ms
Errers: 0
ahmad@ahmad:~/saxpy-benchmark/src$./saxpy ocll hg
Platform "Intel(R) OpenCL". Devices:
- [gpu] Intel(R) Corporation: Intel(R) HD Graphics
(Max compute units: 23, max work group size: 256)
- [cpu] Intel(R) Corporation: Intel(R) Core(TM) i7-7600U CPU @ 2.80GHz
(Max compute units: 4, max work group size: 8192)

CPU execution time 59.187 ms
GPU execution time 63.403 ms
Errors: @

‘Using Intel(R) Corporation Intel(R) HD Graphics

And no, this is not a valid solution:

cout << “CPU execution time = 59.187 ms” << endl;
cout << “GPU execution time 63.403 ms” << endl;

Operating System Survey

Quite a spread usage of operating systems

~75% managed to get it to work

Why does the OS even matter?

Mac OS: the only OS that comes with
OpenCL pre-installed

Linux: does not come with OCL pre-installed

Windows: - Virtual environment cuts off access
to (integrated) GPU
- Upcoming support for native Linux
subsystem
- Possible to run natively, but not
tested!

E A =

HlLinux
I Mac 0S
[IWindows

18%

59% 23%

OSs of Summer Students 2019

Hands-On Session

Current setup

oS X: run natively
Linux: run in Docker container (useful docker
commands in the course materials!)

Windows: |ook for someone with Linux / OSX
or run natively if you dare...

NB: Make sure the source files are up to date!

Linux: docker pull ahesam/intro-gpu
OS X : git pull

Code available at (arready in docker container):

https://github.com/Senui/saxpy-benchmark/
(forked repo)

https://github.com/Senui/saxpy-benchmark/

Demo Docker setup

Hands-On Session

Go through the code and understand it by
reading the comments:

saxpy-benchmark/src/saxpy_ocll_hg.cpp

OpenCL API: https://github.khronos.orqg/OpenCL-CLHPP/

Exercise: Heterogeneous Runtime
Edit the file such that:
- Half of the computation on GPU
- Other half on CPU
- Add timer for CPU execution (GPU timer already there)
- Error stays O

Follow-up exercise (if time permits):
Profile the time it takes for data transfers (CPU - GPU, and GPU - CPU),
And compare them against the execution times

Q: Are they what you expect? Why (not)?

Q: How could you effectively ‘hide’ the data transfers?

Q: How would your observations differ with a dedicated GPU?

Useful Commands

The source files can be found In:

saxpy—-benchmark/src

YOU W|” Only need tO edlt saxpy_ocll_hg.cpp

'0 compile your program simply run maxe

‘0 run your program run:
./saxpy_ocll_hg
In the src directory

QUESTIONS?

Problems

> ERROR: clGetPlatformIDs(code: -1001)

> Most likely because you have an older Intel CPU
that i1s not supported with OpenCL

Is development for vy Bridge architecture going to start
soon? #1283

(CHEEL Il ivanmlerner opened this issue on Feb 9 - 2 comments

E ivanmlerner commented on Feb 9 —-::;-;::- Assi|

MNo ol

Hello, according to intel's page, this driver stack will substitute both closed source drivers and beignet, when

is support for lvy Bridge going to getin? Labe

MNone

“ bfliflet commented on Feb 9 Contributor ~ +(&) - i
. . Proje
MNone

There are no plans that | am aware of to internally back port this library for Gen7 class (ie. Ivybridge and
Haswell) hardware. There is a fair amount of runtime work but the bigger effort would be related to the
compiler itself which was completely rearchitected in the Gen8/9 timeframe. That said, there's nothing
prohibiting the underlying compute-runtime SW architecture from supporting it through community provided Nom

Miles

submissions.
Notif

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

