

1

Deep Learning strategies for ProtoDUNE raw data denoising

Marco Rossi

Sofia Vallecorsa

18/05/2021

vCHEP 2021

DUNE

Deep Underground Neutrino Experiment, Fermilab (US), from 2026

Matter vs Anti-Matter

Unification of Forces

Black Hole Formation

DUNE

Deep Underground Neutrino Experiment, Fermilab (US), from 2026

vCHEP 2021

Detector - LArTPC

Liquid Argon Time Projection Chamber

Big box filled with liquid Argon (Ar)

CERN

Electronics shapes electron induced current

Plot Raw Digits as images (ADC counts on Time vs Wire)

ProtoDUNE - Raw Data

2D Array

Noisy Waveform

ProtoDUNE - Raw Data

2D Array

Clear Waveform

Model Overview

 Graph Convolutional Neural Network (GCNN)

Exploit Non-Local features Data Parallel approach Distributed Training (time scaling?)

Downsampling – Upsampling branches Process entire images (long range features) Faster inference

GCNN Layer

From GCNN Network

Reference: https://arxiv.org/abs/1907.08448

Increased complexity within layers

SCG Layer

From USCG-Net

Reference: https://arxiv.org/abs/2009.01599

Before building the graph, downscale the image to low size

vCHEP 2021

Dataset

- Generate two dataset with <u>LarSoft</u> dunetpc software (versions v08_24_00, v09_10_00)
- v08_24_00: 10 events with beam energy 2 GeV
- v09_10_00: 10 events per beam energy (0.3 GeV, 0.5 GeV, 1 GeV, 2 GeV, 3 GeV, 6 GeV, 7GeV), total 80
- v09 dataset is richer and contains more complex signal features to detect (negative tails)

 Split datasets in train/validation/test sets as 80/10/10 % DUNE:ProtoDUNE-SP

Negative tail example. This feature is present in v09 only.

Reference: https://arxiv.org/pdf/2007.06722.pdf

Results

• All networks are trained with Mean Squared Error loss

• Neural networks learn to shape exactly the clear waveform

• The traditional tool filters the waveform in Fourier space not preserving amplitudes

Results

On v08_24_00 dataset

Metrics measuring the precision of reconstructed (denoised) objects

Networks outperform traditional baseline tool

Results

On v09_10_00 dataset

Metrics measuring the precision of reconstructed (denoised) objects

USCG-Net shows good generalization power

Layer Performance

IBM Minsky Power8 Cluster with WMLA

Good scaling for both networks

Layer Performance

IBM Minsky Power8 Cluster with WMLA

- Main goal: replace DUNE reconstruction algorithm with Deep Learning
- Test models on ProtoDUNE Simulation data
- Implemented raw data denoising with multiple DL approaches
- Outperformed baseline algorithm with good generalization power

THANK YOU !

QUESTIONS?

Marco Rossi, marco.rossi@cern.ch Sofia Vallecorsa, sofia.vallecorsa@cern.ch

vCHEP 2021

References

Cited Material:

- [1] Deep Learning Strategies for ProtoDUNE raw data denoising https://arxiv.org/pdf/1509.02971.pdf
- [2] LarSoft software webpage <u>https://larsoft.org/</u>
- [3] First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform <u>https://arxiv.org/pdf/2007.06722.pdf</u>
- [4] Deep Graph-Convolutional image Denoising https://arxiv.org/abs/1907.08448
- [5] SCG-Net: Self Constructing Graph Neural Networks for Semantic Segmentation
 - https://arxiv.org/pdf/2009.01599.pdf

Extra Readings:

- [1] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume I: Introduction to DUNE - <u>https://arxiv.org/abs/2002.02967</u>
- [2] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics - <u>https://arxiv.org/abs/2002.03005</u>
- [3] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report,
 - Volume III: DUNE Far Detector Technical Coordination https://arxiv.org/abs/2002.03008
- [4] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume IV: Far Detector Single-phase Technology - <u>https://arxiv.org/abs/2002.03010</u>

vCHEP 2021