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DUNE
Deep Underground Neutrino Experiment, Fermilab (US), from 2026 

Black Hole FormationUnification of ForcesMatter vs Anti-Matter
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DUNE
Deep Underground Neutrino Experiment, Fermilab (US), from 2026 

ProtoDUNE, CERN (CH), 
From 2017
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Detector - LArTPC
Liquid Argon Time Projection Chamber

Big box filled with liquid Argon (Ar)

Electronics shapes electron induced current

Plot Raw Digits as images (ADC counts on Time vs Wire)
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Offline Data Processing
Proposed Workflow

Reconstruction Analysis

Denoising Hit 
Finding

Deep Learning Model

Particle 
Identification

Event 
Labelling

Simulation

Detector

Slicing

Raw Data
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ProtoDUNE – Raw Data

Noisy Waveform

 High resolution

 Sparse features

2D Array
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ProtoDUNE – Raw Data

Clear Waveform

 High resolution

 Sparse features

2D Array
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Model Overview

 Graph Convolutional Neural Network
(GCNN)

Exploit Non-Local features
Data Parallel approach
Distributed Training ( time scaling ? )

 U-Shape Self Constructing Graph Network
(USCG-Net)

Downsampling – Upsampling branches
Process entire images ( long range features )
Faster inference

Reference: https://arxiv.org/abs/2103.01596

https://arxiv.org/abs/2103.01596
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GCNN Layer
Reference: https://arxiv.org/abs/1907.08448

Convolutional Filter
            (local)

Non local aggregator

Non local graph:

Exploit long distance 
correlations

k = 8

Warning: Complexity 
order O(n2)

Increased complexity within layers

From GCNN Network
Reference: https://arxiv.org/abs/1907.08448

https://arxiv.org/abs/1907.08448
https://arxiv.org/abs/1907.08448
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SCG Layer

Learns: 
 graph G: (V,E)
 node feature vector 

Graph Neural Network to 
analyze node features

Key point: Computational Efficiency
Before building the graph, downscale the 
image to low size 

From USCG-Net
Reference: https://arxiv.org/abs/2009.01599

https://arxiv.org/abs/2009.01599
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Dataset

Negative tail example. This feature is present in 
v09 only.

Reference: https://arxiv.org/pdf/2007.06722.pdf

 Generate two dataset with LarSoft dunetpc software (versions v08_24_00, v09_10_00)

 v08_24_00: 10 events with beam energy 2 GeV

 v09_10_00: 10 events per beam energy (0.3 GeV, 0.5 GeV, 1 GeV, 2 GeV, 3 GeV, 6 GeV, 7GeV), total 80

 v09 dataset is richer and contains more complex signal features to detect (negative tails)

 Split datasets in train/validation/test sets as 80/10/10 %

https://arxiv.org/pdf/2007.06722.pdf
https://larsoft.org/
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Results

 All networks are trained with Mean Squared Error loss

 Neural networks learn to shape exactly the clear waveform

 The traditional tool filters the waveform in Fourier space not preserving amplitudes

Reference: https://arxiv.org/abs/2103.01596

https://arxiv.org/abs/2103.01596
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Results

Networks outperform traditional baseline tool

Metrics measuring the precision of reconstructed (denoised) objects

Reference: https://arxiv.org/abs/2103.01596

The higher, the better ! The lower, the better !

On v08_24_00 dataset

https://arxiv.org/abs/2103.01596
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Results

USCG-Net shows good generalization power

Metrics measuring the precision of reconstructed (denoised) objects

Reference: https://arxiv.org/abs/2103.01596

The higher, the better ! The lower, the better !

On v09_10_00 dataset

https://arxiv.org/abs/2103.01596
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Layer Performance
IBM Minsky Power8 Cluster with WMLA

Multi GPU – Single Node - Single Process setup

Algorithm splits the workload on the desired number of GPUs
Good scaling for both networks
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Layer Performance
IBM Minsky Power8 Cluster with WMLA

Multi GPU – Multi Node - Multi Process setup

The more available GPUs, the better
The more subprocesses, the better

Ordering scheme rule of thumb
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Summary

 Main goal: replace DUNE reconstruction algorithm with Deep Learning 

 Test models on ProtoDUNE Simulation data

 Implemented raw data denoising with multiple DL approaches

 Outperformed baseline algorithm with good generalization power
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THANK YOU !

    QUESTIONS?
Marco Rossi, marco.rossi@cern.ch

Sofia Vallecorsa, sofia.vallecorsa@cern.ch
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Cited Material:
[1] Deep Learning Strategies for ProtoDUNE raw data denoising - https://arxiv.org/pdf/1509.02971.pdf
[2] LarSoft software webpage - https://larsoft.org/
[3] First results on ProtoDUNE-SP liquid argon time projection chamber performance from a   

        beam test at the CERN Neutrino Platform - https://arxiv.org/pdf/2007.06722.pdf
       [4] Deep Graph-Convolutional image Denoising - https://arxiv.org/abs/1907.08448
       [5] SCG-Net: Self Constructing Graph Neural Networks for Semantic Segmentation

      - https://arxiv.org/pdf/2009.01599.pdf

Extra Readings:
[1] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report,   

               Volume I: Introduction to DUNE - https://arxiv.org/abs/2002.02967
[2] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report,   

               Volume II: DUNE Physics - https://arxiv.org/abs/2002.03005
[3] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report,   

               Volume III: DUNE Far Detector Technical Coordination - https://arxiv.org/abs/2002.03008
[4] Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report,   

               Volume IV: Far Detector Single-phase Technology - https://arxiv.org/abs/2002.03010
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