
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:28
https://doi.org/10.1007/s41781-021-00074-y

ORIGINAL ARTICLE

HEPiX Benchmarking Solution for WLCG Computing Resources

Domenico Giordano1 · Manfred Alef2 · Luca Atzori1 · Jean‑Michel Barbet3 · Olga Datskova1 · Maria Girone1 ·
Christopher Hollowell5 · Martina Javurkova4 · Riccardo Maganza1 · Miguel F. Medeiros1 · Michele Michelotto6 ·
Lorenzo Rinaldi9 · Andrea Sciabà1 · Randall J. Sobie7 · David Southwick1,8 · Tristan Sullivan7 ·
Andrea Valassi1

Received: 30 August 2021 / Accepted: 8 November 2021
© The Author(s) 2021

Abstract
The HEPiX Benchmarking Working Group has developed a framework to benchmark the performance of a computational
server using the software applications of the High Energy Physics (HEP) community. This framework consists of two main
components, named HEP-Workloads and HEPscore. HEP-Workloads is a collection of standalone production applications
provided by a number of HEP experiments. HEPscore is designed to run HEP-Workloads and provide an overall measure-
ment that is representative of the computing power of a system. HEPscore is able to measure the performance of systems
with different processor architectures and accelerators. The framework is completed by the HEP Benchmark Suite that sim-
plifies the process of executing HEPscore and other benchmarks such as HEP-SPEC06, SPEC CPU 2017, and DB12. This
paper describes the motivation, the design choices, and the results achieved by the HEPiX Benchmarking Working group.
A perspective on future plans is also presented.

Keywords CPU benchmark · GPU benchmark · High throughput computing · WLCG · LHC computing · HEP
experiments · High-Energy Physics · Heterogeneous computing

Introduction

The HEP-SPEC06 (HS06) benchmark [1], based on SPEC
CPU 2006 [2], is currently used by the Worldwide LHC
Computing Grid (WLCG) [3] community to estimate the
performance of a computing server. HS06 is adopted by the
WLCG as a performance metric for resource capacity plan-
ning, hardware acquisition, pledging of future resources, and
usage accounting of the experiments.

HS06 has been used for over a decade, satisfying the
WLCG requirements in a landscape that progressively
evolved from CPUs with a few cores to multi-cores CPUs.
When HS06 was established, the HEP applications shared
several commonalities with the SPEC CPU 2006 work-
loads included in HS06: they were characterized by single-
threaded and single-process applications, compiled in 32-bit
mode, with a memory footprint of about 1 GB per process.
Since then, the HEP-workloads have significantly changed
and evidence of scaling deviation with respect to HS06 has
been reported [4]. Even if HS06 may continue to be a viable
benchmark for evaluating the performance of x86 CPUs, the
community will soon require a benchmark to evaluate also

Innovation in HEP software and computing for the challenges
of the next decade" Guest editors: Ian Bird, Simone Campana,
Graeme A. Stewart S.I. Innovation in HEP software and
computing for the challenges of the next decade (invitation only).

 * Domenico Giordano
 domenico.giordano@cern.ch

1 CERN, Geneva, Switzerland
2 KIT, Karlsruhe, Germany
3 Subatech UMR 6457, CNRS-IN2P3, IMT Atlantique,

Université de Nantes, Nantes, France
4 University of Massachusetts, Amherst, USA
5 Brookhaven National Laboratory, Upton, USA
6 INFN, Istituto Nazionale di Fisica Nucleare, Padua, Italy
7 Department of Physics and Astronomy, University

of Victoria, Victoria, BC, Canada
8 University of Iowa, Iowa, USA
9 Dipartimento di Fisica e Astronomia, Università di Bologna

and INFN, Bologna, Italy

http://orcid.org/0000-0002-9789-3188
http://orcid.org/0000-0003-0436-2183
http://orcid.org/0000-0001-9608-9940
http://orcid.org/0000-0002-4371-1430
http://orcid.org/0000-0001-7430-7599
http://orcid.org/0000-0003-4229-7191
http://orcid.org/0000-0001-9322-9565
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00074-y&domain=pdf

 Computing and Software for Big Science (2021) 5:28

1 3

 28 Page 2 of 11

emerging hardware and software technologies to be adopted
in the coming years. From the hardware point of view, CPU
architectures have evolved and high-throughput computing
has become heterogeneous. Hardware accelerators such as
GPUs and FPGAs, as well as non-x86 CPU architectures
as ARM, are being adopted. An HEP benchmark should
provide a profiling of all these architectures, remaining rep-
resentative of the HEP applications that will also run on
the same architectures. From the application point of view,
the HEP software is being redesigned to take advantage of
the new architectures, and to exploit multi-threading, vec-
torization, and parallel computing. Although some of these
innovations are not yet adopted in the production software
of the experiments, an HEP benchmark should be designed
to include them. Last but not least, envisaging a transition to
an alternative benchmark is particularly important, because
the support for SPEC CPU 2006 ended in 2018; therefore,
any further development is not possible.

The HEPiX Benchmarking Working Group [5] has been
tasked by WLCG to find a replacement for HS06 that meets
the needs of the community. The first alternative considered
was SPEC CPU 2017 [6]. It contains a larger application set

than the 2006 version, at the cost of a longer compiler time.
SPEC CPU 2017 was found highly correlated with HS06
when executing the C++ applications included in its suite
(Fig. 1) [7]. Therefore, it can be a natural replacement of
HS06, coming with the same support from the SPEC organi-
zation and a simple conversion factor to link with HS06.

Note that the HS06 score reported in Fig. 1 is deter-
mined when compiling the applications with the 64-bits
compiler flag (HS0664bits). This choice, common to other
measurements done in this report, is a consequence of a
number of studies [8, 9] showing how the official HS06
configuration, built with 32-bits compiled flag, reports a
score that is systematically lower than the 64-bits version
by a factor of 10–20%. Although this discrepancy was
known, the official HS06 never changed to the 64-bits flag
when the HEP software moved to 64 bits. The choice of
keeping the 32-bits compiler flag was meant to avoid a
redefinition of the accounting values that the move to 64
bits would have implied.

Replacing HS06 with SPEC CPU 2017 would not solve
a conceptual dichotomy that has caused criticism also for
HS06: both suites do not include any workloads of the
HEP community and they uses the CPU resources differ-
ently. A number of studies [10, 11] have highlighted the

8 9 10 11 12 13 14 15
 Score per Core64bitsHS06

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

S
P

E
C

20
17

 S
co

re
 p

er
 C

or
e

r = 0.976

8 9 10 11 12 13 14 15
 Score per Core64bitsHS06

0.3−

0.2−

0.1−

0

0.1

0.2

0.3

S
P

E
C

20
17

 S
co

re
 p

er
 C

or
e

/ F
it

-
1

Fig. 1 SPEC CPU 2017 vs HS06
64bits

 scores (top). Each point cor-
responds to a different CPU model. The scores are normalized to
the number of available cores. The correlation coefficient of the two
samples is 0.976. The line is a linear fit to the data points where the
y-intercept was fixed to zero. The normalized residuals with respect
to the fit values are also reported (bottom). The data used in this plot
were obtained from Ref. [7]

Fig. 2 Percentage of the CPU cycles spent in front-end stalls (FE),
back-end stalls (BE), in bad speculation (BS), or in completed exe-
cutions retired from the execution stack (RET), as a function of the
application’s running time, for the ATLAS simulation (top) and the
HS06 omnetpp application (bottom). The initialization and fina-
lization phase of the execution have been excluded. This plot was
obtained from Ref. [11]

Computing and Software for Big Science (2021) 5:28

1 3

Page 3 of 11 28

different CPU usage patterns of HS06, SPEC CPU 2017,
and HEP applications as measured with CPU performance
counters. Comparisons of the application execution cycles
highlighted deviations of the order of 60% between the the
HEP applications and HS06/SPEC CPU 2017, whereas
the HEP applications were consistent with each other to
within 20%. As an example, Fig. 2 shows the percentage
of CPU cycles spent in each of the four categories of the
execution stack for one LHC experiment application and
one HS06 application.

As a result, the Benchmarking Working Group has
explored a benchmark solution based on HEP applications,
that would be by construction correlated with the workloads
of the HEP community. Even though HEP applications are
complex software packages, and using them as benchmark
applications has been challenging in the past, new and estab-
lished IT practices make this new approach feasible. For
example, OS-level virtualization enables the encapsulation
of the experiment software stack, data and configuration in a
standalone container image without any additional depend-
ency or requirement for external network connectivity.

The concept of a HEP-specific benchmark was first pro-
posed at the WLCG Workshop in Manchester (2017) [12].
This led to the creation of the HEP Benchmarks project,
and the development of a software framework to benchmark
the performance of computing servers using HEP applica-
tions [13]. A key requirement of the framework is that it
must be easy to install and use, and there must be a plan for
long-term support. The project is maintained on the GitLab
infrastructure at CERN, and comprises several repositories
that include benchmarks, orchestration, and analysis pack-
ages [14]. The WLCG would like an open-source solution
with a free license that would guarantee that the framework’s
components have copyright protection, while still allowing
for its inclusion in derivative work. Therefore, all the com-
ponents are released under GNU GPL v3, and similar license
conditions are verified for the selected application software
from the experiments. The benchmark framework is free of
charge, avoiding the need to acquire a license, in contrast to
HS06 and SPEC CPU 2017 that are proprietary packages
requiring licenses at each location.

This paper describes the current state of the HEP Bench-
marks project. Section “HEP-Workloads” describes HEP-
Workloads, which is the collection of applications provided
by the HEP experiments and used to create the HEPScore
benchmark that is presented in Sec. “HEPscore”. The HEP
Benchmark Suite, used to run benchmark applications and
to collect, store, and process benchmark data, is described in
Sec. “HEP Benchmark Suite”. Section “Results Using HEP-
score�” details the properties of a proof-of-concept bench-
mark (HEPscore�), defined from a set of current HEP appli-
cations as demonstrator of the proposed approach. Section

“Outlook” provides an overview of the future plans of the
Benchmarking Working Group.

HEP‑Workloads

HEP-Workloads is a collection of applications provided by
several experiments. The repository [14] contains the code
and infrastructure, both common and workload-specific, to
build a standalone HEP-Workloads container image for each
application.

Each HEP-Workloads container encapsulates the software
and input data needed to run the application of a specific
experiment. The software of the HEP experiments is typi-
cally stored in the CVMFS file system [15]. CVMFS is a
remote file system, whereas the HEP-workload containers
must contain all the software to avoid any dependency on
remote services. The benchmark applications typically need
a subset of the software stack of an experiment. As a result, a
procedure has been developed, based on the CVMFS Trace
and Export utilities, to export the application software from
CVMFS to a local folder inside a container. The procedure
performs a first run of the application with access to the
CVMFS mount point to trace the accessed software files.
Subsequently, the Export utility copies the traced files to
a local archive that can be included in the HEP-Workloads
container image. The CVMFS Trace and Export utilities
simplifies the building of the HEP-Workloads containers,
avoiding the installation of large software packages and
their dependencies. Note that the framework developed in
HEP-Workloads still includes as an option the installation
of software via package management systems.

The HEP-Workloads containers are built by the Bench-
marking Working Group with the support of the software
experts of the experiments. The build procedure is imple-
mented in the HEP-Workloads GitLab repository and lev-
erages the GitLab continuous integration framework. The
experts need to prepare an orchestrator script, which sets
the runtime environment accessing CVMFS and runs the
experiment’s application. Once the application has finished,
the orchestrator parses the output logs to determine the event
throughput, which is used as the benchmark score.

Each HEP-Workloads container includes a configuration
file for the application and, in some cases, one or more input
files with event data or conditions data needed for processing
the events. The number of events to be processed is configur-
able, which allows one to adjust the duration of the execu-
tion. The size of the input data file depends on the size of
a single event and on the maximum number of events that
can be processed.

HEP-Workloads currently includes a preliminary set of
applications that generate, simulate, digitize, and reconstruct

 Computing and Software for Big Science (2021) 5:28

1 3

 28 Page 4 of 11

HEP events [16] from the ATLAS [17], CMS [18], and
LHCb [19] experiments at the CERN Laboratory in Geneva
and the Belle II experiment [20] at the KEK Laboratory
in Tsukuba, Japan (Table 1). The current set of benchmark
workloads from the LHC experiments use the older Run2
software for the collision data collected up to 2018. Work-
loads using the newer Run3 software, for data to be col-
lected in 2022 and beyond, will be added once available.
The Belle II benchmark workload uses the latest software.

The size of the HEP-Workloads containers ranges
between 1 and 4 GB (including the software and input data
files). The images are hosted and distributed in the CERN
GitLab container registry.

An orchestrator script within each HEP-Workloads con-
tainer manages the configuration of the environment, the
start of the application, the error handling, and the extraction
of the results. The orchestrator produces a benchmark report
in a JSON format, as shown below, that includes the work-
load scores (wl-scores) and the status flag of the run (log).

{...,
"report": {

"wl-scores": {"gen-sim": 18.8476,
"gen": 95.9261,
"sim" : 24.2931 },

"log": "ok"},
...
}

Currently, all HEP-workloads are event-based applica-
tions, and wl-scores is the total number of processed events
per second.

One can configure the orchestrator to simultaneously run
multiple, independent copies of the same application. The
default running-mode, named the full-load configuration,
exploits all the available cores of a server and ensures that
resources are not over-committed. The number of copies of

the application is determined by the number of cores in the
server and the number of threads/processes per application
copy.

The orchestrator and the HEP application run unprivi-
leged. This feature makes it possible to run the HEP-Work-
loads on HPC sites that, for security reasons, are averse to
any elevated permissions or processes.

To create a reliable benchmark to replace HS06, it is criti-
cal that the results are reproducible for a given configura-
tion file and input file. This requires that the same event
sequence must be processed in repeated measurements. This
is enforced by fixing in the application’s configuration the
parameters that affect the sequence, such as the type of phys-
ics event to be simulated, the random number seed to be
used, and the number of events per thread to be processed.

Figure 3 shows histograms of the events processed per
second of each of the HEP-Workloads listed in Table 1 run
on a single server. Each histogram is fitted with a Gaussian
distribution and is shown as a solid line in the figure. For
each of the HEP-Workloads, the ratio of the standard devia-
tion to the mean value, obtained from the fit, is less than 1%
of the fitted mean values, demonstrating the high level of
reproducibility of these measurements. Similar results are
obtained for the other servers studied in this work.

HEPscore

HEPscore is the utility that orchestrates the execution of
multiple HEP-Workloads containers and determines the
benchmark score of a given compute server [14]. Similar
to HS06, each HEP-workload i is executed multiple times
(three by default) on a given server m and the application
score, ai(m) , for the ith workload is the median value of
the wl-scores in successful runs to minimize the impact of
fluctuations.

The individual application scores ai(m) are normalized
to the scores obtained on the reference server ai(mR) . The

Table 1 Preliminary list of the HEP-Workloads

The ATLAS, CMS, and LHCb workloads use their Run2 software. The table includes the software license, number of threads, the size of the
container image, the number of events processed per thread, the runtime, and the wl-score. The runtime and wl-score were measured on a refer-
ence server: Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz, with hyper-threading enabled

HEP-workload License Threads Size
[GB]

Events/threads Runtime
[min]

wl-score
[Events/s]

ATLAS GEN Apache v2 [23] 1 0.5 200 14 384
ATLAS SIM Apache v2 [23] 1 1.9 10 90 0.064
Belle II GEN-SIM-RECO GNU LGPL v3 [24] 1 0.9 50 8 5.44
CMS GEN-SIM Apache v2 [25] 4 2.0 20 15 0.73
CMS DIGI Apache v2 [25] 4 4.0 50 9 3.58
CMS RECO Apache v2 [25] 4 2.9 50 14 2.20
LHCb GEN-SIM GNU GPL v3 [26] 1 0.7 5 33 90.3

Computing and Software for Big Science (2021) 5:28

1 3

Page 5 of 11 28

last column of Table 1 shows the wl-score obtained on the
reference server mR , given in events per second. The nor-
malized scores anorm

i
(m) = ai(m)∕ai(mR) are combined into

a single benchmark value via the weighted geometric mean.
The weights wi allow one to adjust the relative contribu-
tions of the individual applications. This approach is similar
to the method used to compute the HS06 score; however,
HS06 does not allow one to apply weights to the individual
applications.

The HEPscore value for a set of n HEP-Workloads on a
server m relative to the reference server mR is given by

where n is the number of workloads, � are the configura-
tion parameters of HEPscore and HEP-Workloads, and � is a

(1)HEPscore(m,mR;�) = �

n
�

i=1

�

ai(m;�)

ai(mR;�)

�

wi
∑n
j=1

wj

,

normalization factor that is used to rescale the value to a con-
venient numerical range. The method remains valid across
different system architectures and accelerators, as long as the
HEP-Workloads have been built for these systems.

HEPscore executes the HEP-Workloads container
images via Docker [21] or Singularity [22] container
engines. HEPscore provides an option to force Singular-
ity user namespace-based container execution, which is
needed if HEPscore is executed within a Singularity con-
tainer (nested container environments), like it would be in
pilot jobs of many WLCG sites. HEPscore also includes an
option to clear the container image cache, as the container
images and working directories can easily expand to many
tens of gigabytes and saturate the working space of the
server under study, causing benchmark failures.

HEPscore is agnostic to the internal details of work-
loads. There are few constraints that the design imposes
on the workloads. From the execution perspective, the

 / ndf 2χ 34.5 / 14
µ 383
σ 3

370 375 380 385 390 395 400 405 410 415 420
ATLAS GEN Score (Events / s)

0

10

20

30

40

50

60

70
E

nt
rie

s
 / ndf 2χ 4.2 / 5

µ 02− 6.4e
σ 04− 1e

0.0635 0.064 0.0645 0.065
ATLAS SIM Score (Events / s)

0

10

20

30

40

50

60

70

80

E
nt

rie
s

 / ndf 2χ 4.2 / 5
µ 5.4
σ 03− 5e

5.4 5.41 5.42 5.43 5.44 5.45 5.46 5.47 5.48 5.49 5.5
Belle II GEN-SIM-RECO Score (Events / s)

0

10

20

30

40

50

E
nt

rie
s

 / ndf 2χ 3.8 / 7
µ 0.73
σ 03− 2e

0.71 0.715 0.72 0.725 0.73 0.735 0.74 0.745 0.75
CMS GEN-SIM Score (Events / s)

0

10

20

30

40

50

60

70

E
nt

rie
s

 / ndf 2χ 2.0 / 6
µ 3.6
σ 02− 1e

3.5 3.52 3.54 3.56 3.58 3.6 3.62 3.64 3.66 3.68 3.7
CMS DIGI Score (Events / s)

0

10

20

30

40

50

60

70

E
nt

rie
s

 / ndf 2χ 4.8 / 7
µ 2.2
σ 03− 4e

2.16 2.17 2.18 2.19 2.2 2.21 2.22 2.23 2.24 2.25
CMS RECO Score (Events / s)

0

10

20

30

40

50

60

E
nt

rie
s

 / ndf 2χ 7.7 / 6
µ 90.3
σ 0.1

89.4 89.6 89.8 90 90.2 90.4 90.6 90.8 91 91.2 91.4
LHCb GEN-SIM Score (Events / s)

0

10

20

30

40

50

60

70

E
nt

rie
s

Fig. 3 Histograms of the measurements of the events processed per
second of the seven HEP-Workloads on the reference server Intel(R)
Xeon(R) CPU E5-2630 v3 @ 2.40 GHz, with hyper-threading ena-

bled. Note that each entry is the median of three sequential measure-
ments of the workload

 Computing and Software for Big Science (2021) 5:28

1 3

 28 Page 6 of 11

workloads must be containerized, have as entrypoint
an orchestrator script (see Sec. “HEP-Workloads”), and
accept command line arguments to be configured. From
the reporting point of view, the workloads must produce
a report output file in JSON format, and include in it the
workload scores and the success or failure flag of the run.

HEPscore is configured with a YAML file that includes
the list of HEP-Workloads containers and their respec-
tive configuration parameters. HEPscore creates JSON or
YAML output reports containing the overall score as well
as the individual results of each HEP-Workloads contain-
ers. Runtime parameters, execution time, and system meta-
data information, such as OS kernel version and container
platform, are also included in the report.

HEPscore can run different benchmarks by modifying
the configuration parameters � , and including a different
sets of HEP-workloads. Each parameter set � is reported
in the benchmark result, via a unique identifier, to avoid
misidentification.

In addition, conventional names are assigned to the
parameter set � . For example, the HEPscore software is
being released with a proof-of-concept configuration named
HEPscore� , based on the set of workloads in Table 1 with
the exclusion of the ATLAS SIM workload. 1

This approach is common also for SPEC CPU 2006:
HS06 is the all_cpp.bset [1] set of applications included in
that suite. This is only one of the many possible sets of appli-
cations that can run using SPEC CPU2006.

A WLCG Task Force [27], consisting of members from
the global HEP community, was formed in 2020 to evaluate
the feasibility of replacing HS06 benchmark with HEPscore
benchmark for the WLCG computing resources. The role
of the Task Force is to identify the composition � for the
new benchmark, that is temporarily named HEPscoreX. The
composition of the new benchmark will be defined using
the latest HEP applications, that will be used in production
in the coming years. The work of the Task Force is still in
a preliminary phase and is beyond the scope of this paper.

HEP Benchmark Suite

The HEP Benchmark Suite is an orchestrator that can run the
HEPScore utility described in the previous sections, and also
non-HEP benchmarks such as HS06, SPEC2017, and DB12
[28]. The Suite is a lightweight package written in Python

3, relying only on a few dependencies to ensure its ease of
portability and packaging.

The design of the Suite is presented in Fig. 4, and has
three main components: Plugins, Run Logic, and Data
Processing blocks. The Plugins block contains all add-on
features such as the hardware metadata and communica-
tion interfaces with external services. The Run Logic block
executes benchmarks with options specified in a single con-
figuration file, where parameters such as a list of the bench-
marks, the number of cores, and user tags are specified. The
Data Processing block is responsible for collecting and pro-
cessing the benchmark data for the final report.

The benchmarks, as shown in Fig. 4, are decoupled from
the Suite. The list of benchmarks can be modified or new
ones added without impacting the Suite. To run HS06 and
SPEC CPU 2017 with the Suite, one must use the container
image [29] developed by the Benchmarking Working Group
to orchestrate the SPEC executions and ensures standardiza-
tion of compilation flags and reporting. This container image
does not distribute HS06 and SPEC2017 due to license con-
straints and users will need to provide access to a SPEC
installation and license.

All the benchmark results, together with their running
conditions, are stored in a JSON structure (Fig. 5). The host
metadata comprise all the information to uniquely identify
a host such as the user-defined tags, and software and hard-
ware metadata. The list of user defined tags is the only JSON
object that can be modified by the user to add extra informa-
tion and enrich metadata. All the other JSON objects are
automatically populated by the Suite. The modular JSON
structure enables future schema expansion; therefore, a dedi-
cated report field is used for the schema versioning.

Validate Results

HS06 SPEC CPU2017 HEPscore (CPUs & GPUs) Other

HEP Benchmark Suite

HW Metadata

ActiveMQ

Other

Elastic Search

Benchmarks

Plugins

Publish

Build Report

Run
Benchmark

Collect
Results & Logs

Configure
Benchmark
Parameters

Data processingRun Logic

Fig. 4 HEP Benchmark Suite design. The figure depicts the Suite
main functional blocks together with the decoupled benchmarks

1 ATLAS SIM workload is excluded because of its long running
time, that would make the HEPscore� execution extremely long, with-
out a direct benefit for the studies that will be described in the follow-
ing paragraphs.

Computing and Software for Big Science (2021) 5:28

1 3

Page 7 of 11 28

The report file is saved locally at the end of benchmark
completion. The Suite includes the option of publishing the
results into a remote ActiveMQ [30] message queue, from
where multiple clients, with different levels of access privi-
leges, can consume the injected data (Fig. 6). For example,
site managers can benchmark their clusters and later inspect
these results with the assistance of visualization frameworks.
Additionally, having the benchmark results on these frame-
works allows researchers to easily integrate them in their
data analytic solutions.

Results Using HEPscoreˇ

This section describes the use of the HEP Benchmark
Suite with the HS06

64bits and HEPscore� benchmarks.
HEPscore� is not the future HEP benchmark as it is based
on older software of the LHC experiments and not all the
experiments are included. Furthermore, the applications
used in the measurements are equally weighted giving a
higher significance to the CMS software with its three dis-
tinct applications. However, running the Suite to measure
HS06 and HEPscore� provides valuable feedback on the
functionality of the infrastructure and information on the
usability of the HEPscore as a benchmark.

Fig. 5 HEP Benchmark Suite
JSON metadata. This metadata
structure is modular to allow
future expansion

Json Object

"host"

"suite"
"_id" string

"_timestamp" string

"_timestamp_end" string
"json_version" string

"profiles"

Json Object

"hostname" string

"ip" string

"tags"

"sw"

"hw"

Json Object

"cpu" object

"bios" object

"system" object

"memory" object

"storage" object

"gpu" object

Json Object

"platform" string

"python_version" string

Json Object

"hs06_32" object

"hs06_64" object

"spec2017" object

"hepscore" object

Json Object

"version" string

"benchmark
_versions" object

"flags" object

Hardware MetadataBenchmark Reports

User defined tags

Suite running conditions

Host metadata

Json Object

"cloud" string

"delivery" string

"user_tag" string

"..." string

Software Metadata

Json Object

"cpu" object

"bios" object

"system" object

"memory" object

"storage" object

"gpu" object

Fig. 6 Flow of the report
produced by the HEP Bench-
mark Suite run. The report can
be optionally published to a
transport layer where it can be
digested by several consumers

Transport Layer

NDA DB

Site Manager

Researcher

Other data
consumer

Procurement
TeamsProcurement

Hardware Samples

WLCG & HPC Centres

 Computing and Software for Big Science (2021) 5:28

1 3

 28 Page 8 of 11

The benchmarks were run on servers at a number of
WLCG and HPC sites used by the HEP community to
evaluate a wide range of CPU models. Fifteen differ-
ent x86 Intel and AMD CPU models have been studied
including newly released and older models with physical
cores ranging from 16 to 128. One server, equipped with
a dual Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40 GHz,
was defined to be a reference server that could be used to
normalize the benchmark measurements.

The servers were either full bare-metal servers or large
virtual machines. The virtual machines were sized and
pinned to a whole single CPU socket, to be representative
of the CPU performance, modulo a small overhead due to
the virtualization layer. The servers were configured with
hyper-threading either enabled or disabled; for some CPU
models, there are results for both cases.

The HEP Benchmark Suite orchestrated the execution of
the HS06

64bits and HEPscore� benchmarks. The Suite was
configured to use the full-load running-mode, so that all the
available cores were utilized. The CPU (top) and memory
(bottom) utilization during the execution of HEPscore� on
the reference server is shown in Fig. 7. The vertical lines

indicate the separation between the different HEPscore�
applications that are executed sequentially. Within each of
the six sections, there are three runs of the benchmark. The
results show that the CPUs are fully exploited.

A comparison of the relative deviations of HEPscore� and
HS06

64bits benchmarks, normalized to the reference server,
is shown in Fig. 8 (top) for multiple CPU models. Servers
configured with HT enabled or disabled are shown as open
and full circles, respectively. The different CPU models are
identified by their HS06

64bits score on the x-axis. Older
CPU models have lower HS06

64bits score, mainly because
they have a lower number of available cores. Newer CPU
models populate the rightmost region of the plots. Devia-
tions up to 20% between the HS06

64bits and HEPscore� are
observed. This shows that, with respect to HS06, the HEP-
score approach may provide a more accurate estimation of
the computing power available to typical HEP applications.

The individual HEP applications composing HEPscore�
are also studied in Fig. 8 (bottom). The relative deviations
of their score from the HS06

64bits value can be as large as
40%. Note that the compared scores are normalized to the
reference server; therefore, by construction, the relative

Fig. 7 CPU (top) and memory (bottom) utilization on the reference
server measured during an HEPscore� execution. The results show
six different regions corresponding to the benchmark applications.

Within each region, there are sections associated with the three runs
of the application. The measurement was performed using the tool
Prmon [31]

Computing and Software for Big Science (2021) 5:28

1 3

Page 9 of 11 28

deviations are equal to zero for this server. The deviations
of the individual HEP applications are smaller for the old-
est servers, and grow for the newest servers, as well as their
relative spread grows.

One of the entries in Fig. 8 is the average of measure-
ments performed on 180 identical servers, where the bench-
marks are only run once on each server. The distributions
of these HS06

64bits and HEPscore� measurements show
that the standard deviation of the distribution of HS06

64bits
and HEPscore� relative to the mean value is approxi-
mately 0.34% and 0.06%, respectively (Fig. 9). The result
demonstrates that HEPscore� is reproducible in measure-
ments across similar servers with a resolution better than
HS06

64bits.
The performance of the reference server with HT enabled

when only a subset of the 32 logical cores were loaded by
the benchmark application is shown in Fig. 10. The values
for HS06

64bits and HEPscore� have been normalized to the
measurement using 16 threads, which corresponds to the
number of physical cores of the server. The scaling trend
is similar for both benchmarks and verifies the benefit of
enabling hyper-threading where there is a 20% increase in
throughput using 32 threads.

The results show that the HEP Benchmark Suite is able
to orchestrate the running of the benchmarks over a variety
of servers at different sites under different and often restric-
tive conditions. The HEPscore� results indicate also that a
configuration of HEPscore may yield a potential replace-
ment for HS06.

0 500 1000 1500 2000 2500 3000 3500
64bitsHS06

0.5−
0.4−
0.3−
0.2−
0.1−

0
0.1
0.2
0.3
0.4
0.5

 -
 1

no

rm
64

bi
ts

/H
S

06
no

rm
β

H
E

P
sc

or
e

HT-OFF

HT-ON

0 500 1000 1500 2000 2500 3000 3500
64bitHS06

0.5−
0.4−
0.3−
0.2−
0.1−

0
0.1
0.2
0.3
0.4
0.5

 -
 1

no

rm
64

bi
ts

/H
S

06
no

rm
a

belle2_gen_sim_reco

lhcb_gen_sim

atlas_gen

cms_gen_sim

cms_dig

cms_reco

Fig. 8 Relative deviation of the HEPscore� and HS06
64bits scores

measured on multiple servers and normalized to the score of the ref-
erence server (top). Each CPU model is identified on the x-axis by
the measured HS06

64bits score. The normalized score deviations
from HS06

64bits for each application composing HEPscore� are also
reported (bottom). Each marker represents a given CPU model, with
HT enabled (open circles) or disabled (full circles)

 / ndf 2χ 4.0 / 6
µ 3.05
σ 02− 1e

2.98 3 3.02 3.04 3.06 3.08 3.1 3.12

64bitsHS06

0

10

20

30

40

50

60

E
nt

rie
s

 / ndf 2χ 8.1 / 5
µ 3.13
σ 03− 2e

3.06 3.08 3.1 3.12 3.14 3.16 3.18 3.2

βHEPscore

0
10
20
30
40
50
60
70
80
90

E
nt

rie
s

Fig. 9 Distribution of HS06
64bits (top) and HEPscore� (bottom)

scores of 180 identical servers normalized to the score of the refer-
ence server

0 4 8 12 16 20 24 28 32 36
Threads

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 S
co

re

64bitsHS06

βHEPscore

Fig. 10 HS06
64bits (points) and HEPscore� (open triangles) meas-

urements on the reference server when only a subset of the hardware
threads were loaded by the benchmark application. The values have
been normalized to the measurement using 16 threads, which corre-
sponds to the number of physical cores of the server

 Computing and Software for Big Science (2021) 5:28

1 3

 28 Page 10 of 11

Outlook

The HEPiX Benchmarking Working Group is aware of the
increasing adoption of heterogeneous systems by the HEP
experiments and is developing a single benchmark solution
that will also cover these emerging systems.

As described in Sec. “HEPscore”, HEPscore has been
designed to profile a compute system as a whole, includ-
ing the contribution of co-processors to the overall system
performance. HEPscore combines the event throughput
(wl-score) of the HEP-Workloads into a single score, that
is independent from the underlying hardware resources of
the server. For example, the score will include the impact
of a co-processor if it is utilized by HEP-Workloads. If the
co-processor is not used by any of the HEP-Workloads, then
the score will be identical to the value obtained with a server
that has no co-processor.

For this reason, the Working Group is looking for HEP
applications that can leverage not only traditional proces-
sors but also co-processors. To make the HEPscore bench-
mark meaningful for procurement, pledges, and accounting
of heterogeneous resources, these applications need to be
representative of the future workloads that will run on the
WLCG heterogeneous resources.

The Working Group has already identified three GPU-
capable HEP applications and created prototype HEP-Work-
loads container images for each application: (i) a simulation
of particle trajectories in the LHC by the CERN Accelerator
Group [32]; (ii) a physics event generator application [33];
and (iii) the CMS HLT online reconstruction [34]. Currently,
these applications are not part of any WLCG production
activity and, for this reason, were not included in HEPscore� .
Nevertheless, the Working Group sees the value of anticipat-
ing the developments in this area and is preparing a proof-of-
concept HEPscore configuration for heterogeneous resources
with a measurement campaign.

The Working Group is also extending the HEP bench-
marks to ARM processors. One of the first achievements
has been the ability to benchmark a small number of these
processors (ThunderX2, AWS Graviton2) with HS06 and
SPEC CPU 2017. This was made possible by two actions:
(i) the container image to run HS06 and SPEC CPU 2017
has been built both on x86 and on ARM processors; (ii)
the SPEC CPU 2006 toolkit, which does not include native
support for modern ARM processors, has been extended to
them.2 Similarly, HEP-Workloads container images will be
extended to the ARM systems, by accessing the CVMFS
areas of the experiments that contain the libraries compiled
on ARM chips.

Summary

This paper has described the HEP Benchmarks project
developed by the HEPiX Benchmarking Working Group
for measuring the CPU performance of a server using HEP
applications. The project is motivated by the need to find a
replacement for the HS06 benchmark that is used to bench-
mark x86 CPUs, which is currently the standard benchmark
of the WLCG.

The project includes the utility HEPscore, designed to
aggregate multiple profiling figures in a single benchmark
score. HEPscore adapts well to Grid and HPC centers, and
allows future extension to heterogeneous environments.
The results presented using the demonstrator benchmark,
HEPscore� , show that it may be possible to create a new
benchmark for CPUs based on HEP applications. The new
benchmark will be developed once the LHC experiments
finalize their Run3 software and provide the Working Group
with their reference workloads. The workloads of other
non-LHC experiments will also be added to the set of HEP-
Workloads. The Working Group will make its recommen-
dations to the WLCG Task Force, who will then determine
whether the new benchmark meets the requirements of the
HEP community.

Acknowledgements We would like to thank Matthew Ens for his assis-
tance in finalizing the manuscript. T. Sullivan and R.J. Sobie would like
to thank the support of the Natural Sciences and Engineering Research
Council of Canada.

Funding Open access funding provided by CERN (European Organiza-
tion for Nuclear Research).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Michelotto M et al (2010) A comparison of HEP code with
SPEC1 benchmarks on multi-core worker nodes. J Phys Conf Ser
219:052009. https:// doi. org/ 10. 1088/ 1742- 6596/ 219/5/ 052009

 2. Henning JL (2016) SPEC CPU2006 benchmark descriptions.
SIGARCH Comput Archit News 34:1. https:// doi. org/ 10. 1145/
11867 36. 11867 37

 3. WLCG (2021) The Worldwide LHC Computing Grid. http:// wlcg.
web. cern. ch. Accessed 11 Nov 20212 The procedure to include this extension to a site-owned SPEC CPU

2006 distribution is documented in Ref. [29].

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1742-6596/219/5/052009
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
http://wlcg.web.cern.ch
http://wlcg.web.cern.ch

Computing and Software for Big Science (2021) 5:28

1 3

Page 11 of 11 28

 4. Charpentier P (2017) Benchmarking worker nodes using LHCb
productions and comparing with HEP-SPEC06. J Phys Conf Ser
898:082011. https:// doi. org/ 10. 1088/ 1742- 6596/ 898/8/ 082011

 5. HEPiX Benchmarking Working Group (2021). https:// w3. hepix.
org/ bench marki ng. html. Accessed 11 Nov 2021

 6. SPEC CPU (2017) Standard Performance Evaluation Corporation.
https:// www. spec. org/ cpu20 17/. Accessed 11 Nov 2021

 7. Giordano D, Alef M, Michelotto M (2019) Next generation of
HEP CPU benchmarks. EPJ Web Conf 214:08011. https:// doi. org/
10. 1051/ epjco nf/ 20192 14080 11

 8. Giordano D (2021) HS06 -m32 Vs -m64. HEPiX Benchmarking
Working Group. https:// indico. cern. ch/ event/ 624834/ contr ibuti
ons/ 26463 35/ attac hments/ 14860 43/ 23075 90/ HS06_ 32_ Vs_ 64_
bits- giord ano. pdf. Accessed 11 Nov 2021

 9. Roy G et al (2015) Evaluation of containers as a virtualisation
alternative for HEP workloads. J Phys Conf Ser. https:// doi. org/
10. 1088/ 1742- 6596/ 664/2/ 022034

 10. Muralidharan S, Smith D (2019) Trident: an automated system
tool for collecting and analyzing performance counters. EPJ Web
Conf 214:08024. https:// doi. org/ 10. 1051/ epjco nf/ 20192 14080 24

 11. Giordano D, Santorinaiou E (2020) Next generation of HEP CPU
benchmarks. J Phys Conf Ser 1525:012073. https:// doi. org/ 10.
1088/ 1742- 6596/ 1525/1/ 012073

 12. Giordano D (2017) Benchmark Working Group Update. WLCG
Workshop in Manchester. https:// indico. cern. ch/ event/ 609911/
contr ibuti ons/ 26201 90/ attac hments/ 14804 55/ 22955 76/ WLCG_
Works hop_ 2017_ bench marki ng_ giord ano. pdf. Accessed 11 Nov
2021

 13. Valassi A et al (2020) Using HEP experiment workflows for the
benchmarking and accounting of WLCG computing resources.
EPJ Web Conf 245:07035. https:// doi. org/ 10. 1051/ epjco nf/ 20202
45070 35

 14. HEP-Benchmarks Repository (2021). https:// gitlab. cern. ch/ hep-
bench marks Accessed 11 Nov 2021

 15. Blomer J et al (2017) New directions in the CernVM file system.
J Phys Conf Ser 898:062031. https:// doi. org/ 10. 1088/ 1742- 6596/
898/6/ 062031

 16. A definition of the Monte Carlo applications to generate, simulate,
digitize and reconstruct particle physics collision events. In: A
roadmap for HEP software and computing R&D for the 2020s
computing and software for big science, vol 3, p 1. https:// doi. org/
10. 1007/ s41781- 018- 0018-8

 17. Aad G et al (2008) The ATLAS experiment at the CERN large
hadron collider. JINST 3:S08003. https:// doi. org/ 10. 1088/ 1748-
0221/3/ 08/ S08003

 18. The CMS Collaboration (2008) The CMS experiment at the
CERN LHC. JINST 3:S08004. https:// doi. org/ 10. 1088/ 1748-
0221/3/ 08/ S08004

 19. Alves AA et al (2008) The LHCb detector at the LHC. JINST
3:S08005. https:// doi. org/ 10. 1088/ 1748- 0221/3/ 08/ S08005

 20. Kou E et al (2019) The Belle II Physics ok. Progr Theor Exp Phys
12:123C01. https:// doi. org/ 10. 1093/ ptep/ ptz106

 21. Docker containers (2021). https:// www. docker. com/ resou rces/
what- conta iner. Accessed: 11 Nov 2021

 22. Singularity (2021). https:// sylabs. io/ singu larity/. Accessed 11 Nov
2021

 23. Atlas Athena license (2021). https:// gitlab. cern. ch/ atlas/ athena/
blob/ master/ LICEN SE. Accessed 11 Nov 2021

 24. Belle II license (2021). https:// github. com/ belle2/ basf2/ blob/ main/
LICEN SE. md. https:// doi. org/ 10. 5281/ zenodo. 55741 15. Accessed
11 Nov 2021

 25. CMS CMSSW license (2021). https:// github. com/ cms- sw/ cmssw/
blob/ master/ LICEN SE. Accessed 11 Nov 2021

 26. LHCb license (2021). https:// gitlab. cern. ch/ lhcb/ Gauss/-/ blob/
master/ COPYI NG. Accessed 11 Nov 2021

 27. WLCG HEPscore deployment Task Force (2021). https:// indico.
cern. ch/ event/ 969947/. Accessed 11 Nov 2021

 28. Charpentier P (2017) Benchmarking worker nodes using LHCb
productions and comparing with HEPSpec06. J Phys Conf Ser
898:082011. https:// doi. org/ 10. 1088/ 1742- 6596/ 898/8/ 082011

 29. HEP-SPEC Container Orchestrator (2021). https:// gitlab. cern. ch/
hep- bench marks/ hep- spec. Accessed 11 Nov 2021

 30. ActiveMQ (2021). https:// activ emq. apache. org. Accessed 11 Nov
2021

 31. Venkitesh A et al (2020) Optimization of software on high per-
formance computing platforms for the LUX-ZEPLIN dark matter
experiment. EPJ Web Conf 245:05012. https:// doi. org/ 10. 1051/
epjco nf/ 20202 45050 12

 32. De Maria R et al (2019) SixTrack Version 5: status and new devel-
opments. In: Proceedings of IPAC 2019. Melbourne, Australia:
JACoW, 2019, pp 3200–3203. https:// doi. org/ 10. 18429/ JACoW-
IPAC2 019- WEPTS 043

 33. Valassi A et al (2021) Design and engineering of a simplified
workflow execution for the MG5aMC event generator on GPUs
and vector CPUs. EPJ Web Conf 251:03045. https:// doi. org/ 10.
1051/ epjco nf/ 20212 51030 45

 34. Bocci A et al (2020) Bringing heterogeneity to the CMS software
framework. EPJ Web Conf 245:05009. https:// doi. org/ 10. 1051/
epjco nf/ 20202 45050 09

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1088/1742-6596/898/8/082011
https://w3.hepix.org/benchmarking.html
https://w3.hepix.org/benchmarking.html
https://www.spec.org/cpu2017/
https://doi.org/10.1051/epjconf/201921408011
https://doi.org/10.1051/epjconf/201921408011
https://indico.cern.ch/event/624834/contributions/2646335/attachments/1486043/2307590/HS06_32_Vs_64_bits-giordano.pdf
https://indico.cern.ch/event/624834/contributions/2646335/attachments/1486043/2307590/HS06_32_Vs_64_bits-giordano.pdf
https://indico.cern.ch/event/624834/contributions/2646335/attachments/1486043/2307590/HS06_32_Vs_64_bits-giordano.pdf
https://doi.org/10.1088/1742-6596/664/2/022034
https://doi.org/10.1088/1742-6596/664/2/022034
https://doi.org/10.1051/epjconf/201921408024
https://doi.org/10.1088/1742-6596/1525/1/012073
https://doi.org/10.1088/1742-6596/1525/1/012073
https://indico.cern.ch/event/609911/contributions/2620190/attachments/1480455/2295576/WLCG_Workshop_2017_benchmarking_giordano.pdf
https://indico.cern.ch/event/609911/contributions/2620190/attachments/1480455/2295576/WLCG_Workshop_2017_benchmarking_giordano.pdf
https://indico.cern.ch/event/609911/contributions/2620190/attachments/1480455/2295576/WLCG_Workshop_2017_benchmarking_giordano.pdf
https://doi.org/10.1051/epjconf/202024507035
https://doi.org/10.1051/epjconf/202024507035
https://gitlab.cern.ch/hep-benchmarks
https://gitlab.cern.ch/hep-benchmarks
https://doi.org/10.1088/1742-6596/898/6/062031
https://doi.org/10.1088/1742-6596/898/6/062031
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08005
https://doi.org/10.1093/ptep/ptz106
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://sylabs.io/singularity/
https://gitlab.cern.ch/atlas/athena/blob/master/LICENSE
https://gitlab.cern.ch/atlas/athena/blob/master/LICENSE
https://github.com/belle2/basf2/blob/main/LICENSE.md
https://github.com/belle2/basf2/blob/main/LICENSE.md
https://doi.org/10.5281/zenodo.5574115
https://github.com/cms-sw/cmssw/blob/master/LICENSE
https://github.com/cms-sw/cmssw/blob/master/LICENSE
https://gitlab.cern.ch/lhcb/Gauss/-/blob/master/COPYING
https://gitlab.cern.ch/lhcb/Gauss/-/blob/master/COPYING
https://indico.cern.ch/event/969947/
https://indico.cern.ch/event/969947/
https://doi.org/10.1088/1742-6596/898/8/082011
https://gitlab.cern.ch/hep-benchmarks/hep-spec
https://gitlab.cern.ch/hep-benchmarks/hep-spec
https://activemq.apache.org
https://doi.org/10.1051/epjconf/202024505012
https://doi.org/10.1051/epjconf/202024505012
https://doi.org/10.18429/JACoW-IPAC2019-WEPTS043
https://doi.org/10.18429/JACoW-IPAC2019-WEPTS043
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.1051/epjconf/202024505009
https://doi.org/10.1051/epjconf/202024505009

	HEPiX Benchmarking Solution for WLCG Computing Resources
	Abstract
	Introduction
	HEP-Workloads
	HEPscore
	HEP Benchmark Suite
	Results Using HEPscore
	Outlook
	Summary
	Acknowledgements
	References

