

ALICE Grid throughput prediction

Costin Grigoras, Mircea-Marian Popa, Sofia Vallecorsa

CERN

Sofia. Vallecorsa @cern.ch

29/11/2021

Outline

Model the MonALISA I/O throughput using monitoring data

Focus on READ queries (READ/WRITE ratio is 30:1)

Study a set of RNN-based architectures

- Throughput modeling as a function of network topology (project funded by ATTRACT)
 - PCA + LSTM
 - Auto-Encoder + LSTM
- Throughput forecasting through end-to-end Seq2Seq inspired model

MonALISA

An agent based, dynamic service system to monitor, control and optimize distributed systems

Automatic storage discovery

Selection of storage elements for file access

- Answers 2 types of questions (queries) from clients:
 - which is the optimal SE to READ a input file from ?
 - where to **WRITE** output data?
- Gathers data on network topology and SE usage and functionality
- A set of central nodes answer queries using a heuristic method

Heuristic network topology discovery

- Compute client-to-storage distance:
 - distance matrix aggregates data on network topology (~6700 elements)
 - demotion matrix describes SE availability
- Build sorted SE list
- MonALISA logs monitoring data using a 2 minutes time step
 - Distance and demotion matrices are updated asynchronously

Input data pre-processing (I)

Queries Readsize

- List of queries, each containing
 - Computing farm
 - File read size (RS)
 - SEs containing a copy of the file
- A file will most likely be read from CERN SE when it is the first option

Time Stamp	Read Size (Bytes)	Computing Farm	SE list
17000	12360	CERN	IHEP; CCIN2P3; CERN
19000	102360	CCIN2P3	CEPH; CCIN2P3; CERN
17000	34360	CCIN2P3	RAL; SINC; CERN

Sort entries according to distance and demotion matrices	Time Stamp	Read Size (Bytes)	Computing Farm	SE list
	17000	12360	CERN	CERN; CCIN2P3; IHEP
	19000	102360	CCIN2P3	CCIN2P3; CERN; CEPH
	17000	34360	CCIN2P3	CERN; RAL; SINC

Time Stamp	Read Size (Bytes)	Computing Farm	SE list
17000	12360	CERN	CERN; CCIN2P3; IHEP
17000	34360	CCIN2P3	CERN; RAL; SINC

Sum entries with	
same time stamp	

Time Stamp	Read Size (Bytes)
17000	46720

Input data pre-processing (II)

Distance matrices dimensionality reduction

- Predict throughput taking into account the network status as monitored by MonALISA through the demotion and distance matrices
- Reduce dimensionality by:
 - Performing a principal component analysis
 - used 11 components which accounted for ~95% of the variance
 - Using auto-encoder neural networks to project to a 10-dimensional latent space

MonALISA throughput

- Large fluctuations in the observed network utilization
- Time series decomposition
 - Model noise using 0-centered Gaussian distribution at a frequency of ~5.91 days
- Use the time stamp to associate throughput to input data

Training dataset:

17 January 2020 -> 24 January 2020 31 January 2020 -> 9 February 2020 9 February 2020 -> 14 February 2020

Validation dataset:

13 May 2020 -> 27 May 2020

RNN architecture

RNN architecture

PCA - LSTM:

11 PCA components + RS

AE – LSTM:

Heuristic matrices (40, 6700)

Performance

PCA:

Validation accuracy 4% **AutoEncoder**: Validation accuracy 5 %

Heuristic matrices update every ~7 hours

Forecasting throughput

Build model inspired by Seq2Seq

Initially introduced for NLP applications

Drop heuristic matrix information

Use query readsize values and past throughput

https://google.github.io/seq2seq/

Seq2Seq time series

- Bin queries RS values in 1 sec intervals per time step
 - 120 RS values in input X_i:
 - X_n= {RS_{i.t}, throughput_t}
- Predict subsequent throughput
 - $Y_n = throughput_{t+n}$
- 2 hyperparameters: input & output sequence lengths

Results

Grid search to optimise input/output size

Best results achieved using low in/out dimensions

Predict next step (2min) with 5% accuracy

Next step prediction is stable

Preformance degrades when forecasting over longer time spans

8 min forecast → ~15%

Increasing input size deteriorates the accuracy > 20%

Results

(in,out)=(10,10)

Prediction= t + 2min

Results

(in,out)=(10,10) **t + 4min**

Time steps

Summary

- Investigate Recurrent Neural Networks -based architectures to model and predict I/O throughput
 - 4% accuracy is a great result for the simulation of such complex dynamic system
 - Short term (2mins) prediction is good (5% accuracy)
- Performance decreases in time
 - Current model is very simple: various strategies for improvement
- Accurate prediction of the ALICE jobs I/O behavior can lead to a reduction of the time to answer client queries
 - In-memory learned model could be used instead of querying the database.
 - Develop a (quantum) Reinforcement Learning (RL) based optimisation

Thanks!

Questions?

PC and ED networks

AE - LSTM

PCA - LSTM

 $input_1 -> (40,12)$

time_distributed(dense) -> (40,12)

bidirectional(LSTM) -> (40,24)

time_distributed(dense) -> (40,10)

time_distributed(dense) -> (40,5)

bidirectional(LSTM) -> (2)

dense -> (1)

Sequence-to-Sequence network

- 2 main customizable hyperparameters
 - o input sequence length: ISL
 - output sequence length : OSL
- tested on 2 data sets
 - train and validation data set : TVDS
 - used for the preliminary studies as well
 - control data set: CDS

Validation MAPE

Performance comparison for the first 10 steps between models

ISL and OSL take values in { 10, 20, 30, 40 } = { 20min, 40min, 60min, 80min}

 $\bullet \quad \text{1SE and OSE take values in } \quad \text{10, 20, 30, 40 } = \{2011111, 40111111, 00111111\}$

