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CERN Quantum Tecnology Initiative

Strategy and long-term benefits Implementation and execution
R&D under a common vision and a shared Concrete R&D objectives

roadmap International education and training
Assess the impact of quantum programs with leading experts, universities
technologies on High Energy Physics and industry

research

Knowledge sharing within High Energy
Build the required knowledge and capacity Physics and beyond

to create impact
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R&D projects and Activities

Computing Sensing Communications Theory

BASE - The Baryon Antibaryon Symmetry Experiment
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Future HEP detectors

Many pilot projects started as part of the CERN openlab quantum programme (https://openlab.cern/quantum)
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https://openlab.cern/quantum
https://doi.org/10.1140/epjst/e2015-02607-4
https://cds.cern.ch/record/2703396

QC@CERN

* Development and optimization of algorithms targeted for
realistic use cases

 Build expertise on state-of-the-art software stack
* Provide resource access to the community for R&D

 Joint projects with industry and other sciences
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QC Algorithms

* Quantum Machine Learning algorithms are a primary candidate for
Investigation

* Increasing use of such techniques in many computing and data analysis flows

« Can be built as hybrid models where quantum computers act as accelerators
where classic computing is not computationally efficient

» Classification, pattern recognition, anomaly detection
 Clustering, optimisation

» Efficient data handling is a challenge

- Data encoding or reduction is required for practical use of NISQ devices
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Example pilot projects '?:l' gE;eanab

Quantum Generative Adversarial Networks for detector simulation
arXiv:2103.15470, arXiv:2101.11132

Quantum Tree Tensor Networks for particle trajectory reconstruction
arXiv:2007.06868, arXiv:2012.01379, arXiv:2109.12636

Quantum Classifiers for Higgs boson identification

arXiv:2104.07692

Hybrid quantum-classical tracking hits embedding

EPJ Web of Conferences (Vol. 251, p. 03065)

Quantum algorithms for anomaly detection

Quantum Boltzman Machines for beams optimization in accelerators

Quantum Born Machines for event generation
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Kiss O. et al., ACAT21

Quantum Born Machine for event generation

Muon Force Carriers predicted by several theoretical models:

» Could be detected by muon fixed-target experiments (FASER) or muon
interactions in calorimeters (ATLAS).
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Results

Generate multiple features

Comparison to classical GAN
and MadGraph
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Conditional Born Machine

Encode E,; condition using 7Ry (B) 71 Rry(B) €
parametrized rotations

Interpolation: train on 150 and H — Ry (E) — Local H | Ry (E) | Local ——*
200 GeV muons and predict 175

GeV signal H | Ry (E) H | Ry (E) >

Data re-uploading makes the quantum circuit more expressive as function of the data
Noise model according to IBM Q Casablanca
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Hardware and Software Resources

* Focus on tools for software development and testing

» Access to different resources: classical (simulators) and quantum hardware
 Cluster with different quantum computing simulators for development up to 20-25 qubits
« ATOS QLM appliance for simulations up to 34 qubits
» Access to the IBM Q systems

« Evaluate different hardware solutions: digital (semiconductors, ions, photons)
and annealer

 Building shared experience on different computing simulators, real NISQ
hardware, and hybrid infrastructures where cloud computing, HPC resources
and quantum computers interact is key to capacity building for the future
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Chang S.Y. et al., Running the Dual-PQC GAN on Noisy
Simulators and Real Quantum Hardware, QTML2021, ACAT21
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Gonzalez Castillo S. et al., EQTC2021

ABAQUS - Automated Benchmarking oo :)

of Algorithms for QUantum Systems eoo0
ABAQUS

A benchmarking platform to provide consistent and

reliable benchmarks for both software frameworks
and hardware devices.

» Extensibility by-design

« Present results in a user-friendly way. ABAQUS

A web application to interactively present
Device Benchmarking

results

Currently supports Qiskit State Vector (with and
without GPU), Cirg and PennyLane
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Synergies with other sciences

The ESA-CERN Joint Announcement at Phi-Week 2020

= Q  » THE EUROPEAN SPACE AGENCY

¢'Iab WE EXPLORE WE INVEST COMMUNITY AND %AIOIAT!UHS FLAGSHIP PROGRAMMES ABOUT OUR PEOPLE PUBLICATIONS NEWS & EVENTS

esa

Special announcement

Exploring the next frontiers of disruptive innovation

®-DEPARTMENT / ®-LAB / EXPLORE / THE ®-LAB EXPLORE OFFICE / Al ENHANCED QUANTUM COMPUTING FOR EARTH OBSERVATION

QC4EQ is a recent ®-lab initiative established in collaboration
with CERN. Quantum computing has the potential to improve
performance, decrease computational costs and solve
previously intractable problems in EO by exploiting quantum
phenomena such as superposition, entanglement and
tunnelling.

The initiative involves creating a quantum capability in ESA-ESRIN (Frascati) which will

Al-enhanced Quantum Computing for EO

by using Quantum Computing to support programmes such as Destination Earth and ERA UNCLASSIFIED - For Official Use

~- -
Copernicus. This collaboration will be extended to link the CERN Quantum Technology. I -y F 2N - % THE EUROPEAN SPACE AGENCY
Initiative, which was announced in June 2020 by the CERN Director General, Fabiola e - — S - s —_—

Gianotti. Through this partnership, ESA and CERN will create new synergies, building

on their common experience in big data, data mining and pattern recognition.
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Chang, Su Yeon et al.,

Quantum Convolutions QTNML2021@NeurlPS2021
Convolutional Filters!'l as Parameterized N-class classification by measuring the
Quantum Circuits (PQC) with single-qubit and probabl!lty distribution for logoN qubit and using
two-qubit operations. categorical cross entropy.
« Reduce risk of barren plateau B -
~ 3| Data i ‘NN i
Alternative architecture: different Jpteiteheingl IR0 =

parameters in each convolutional filters

* Increased model complexity and flexibility _ _ o
Confusion matrix of 4-class MNIST classification
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1T, Hur, L. Kim, and D. K. Park. Quantum convolutional neural network for classical data classification, 2021.
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Summary
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The QTI coordinates quantum research at CERN CERN
Quantum Technology
Quantum Computing is a wide active area Initiative

Strategy and Roadmap

Extensively investigating QC and QML applications to HEP

Setting in place access to resources (classical and quantum)
to ease community R&D

v. 1.0-Rev1

Build synergies and joint projects beyond HEP

30 September 2021

QUANTUM
C\E/RW IQ ) TECHNOLOGY
2 INITIATIVE

https://zenodo.org/record/5553775

QUANTUM
({w IQ ) TECHNOLOGY 02.12.21
2~ INITIATIVE

17




CERN Quantum Technology Initiative

Accelerating Quantum Technology Research and Applications

-

Thanks!

Sofia.Vallecorsa@cern.ch

https://quantum.cern/
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https://openlab.cern/quantum

