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ABSTRACT Generative Adversarial Networks (GANs) have gained notoriety by generating highly realistic
images. The present work explores GAN for simulating High Energy Physics detectors, interpreting detector
output as three-dimensional images. The demands and requirements of a scientific simulation are quite
stringent, as compared to the domain of visual images. Image characteristics such as pixel intensity and
sparsity, for example, have very different distributions. Moreover, detector simulation requires conditioning
on physics inputs, and domain knowledge becomes essential. We, therefore, adjust the pre-processing and
incorporate physics-based constraints in the loss function. We also introduce a multi-step training process
based on transfer learning by breaking up the task complexity. Validation of the results primarily consists of a
detailed comparison to fullMonte Carlo in terms of several physics quantities where a high level of agreement
is found (ranging from a few percent up to 10% across a large particle energy range). In addition, we assess
the performance by physics unrelated metrics, thereby proving further the variability and pertinence through
diverse standpoints. We have demonstrated that an image generation technique from vision can successfully
simulate highly complex physics processes while achieving a speedup ofmore than three orders ofmagnitude
in comparison to the standard Monte Carlo.

INDEX TERMS 3D vision, fast simulation, generative adversarial networks, high energy physics, image
processing and generation, transfer learning.

I. INTRODUCTION
Simulation of particle transport through matter is funda-
mental for interpreting the results of High Energy Physics
(HEP) experiments. The particles undergo complex interac-
tions while traversing the detector material with stochastic
outcomes. The modeling of these processes is carried out
with the help of Monte Carlo (MC) techniques that rely on
repeated random sampling. The MC simulation meets the
theoretical predictions with a high degree of precision but
is both time and resource intensive. The Worldwide LHC
Grid [1] has currently more than 50% of its resources devoted
only to simulation [2]. The future High Luminosity LHC [3]
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will require 100 times more simulated data, thus surpassing
the expected resource availability. The HEP community is
therefore highly motivated to explore fast alternatives, often
trading some accuracy for speed, if only partially, for certain
applications. Fast simulation is a set of established tech-
niques that replaces parts of the detailed MC simulation with
alternative approaches. Currently parametrized approaches
[4]–[6] or lookup tables [7] can provide between 10 and
100 times speedup, achieving different levels of accuracy.
Here we investigate an alternative approach based on Deep
Neural Networks.

HEP detectors can be described as 3D cameras, recording
pictures of particle collisions. Calorimeters, in particular,
detect particles by measuring the energy deposited in interac-
tions with matter. Segmented calorimeters consist of alternate
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arrays of active sensor material and passive dense layers,
to ensure that the incoming (primary) particle will deposit
most of its energy inside their volume. The energy depositions
in calorimeter cells can be compared to the monochromatic
pixel intensities of a 3D image.

The 3DGAN is a convolutional GAN architecture aimed at
stimulating the calorimeter’s energy response. The calorime-
ter is a bottleneck in most HEP simulation pipelines due to
a large number of complex interactions, taking about 90%
of simulation time for some experiments [8]. The model
was developed in several steps. The initial proof of concept
was a simplified prototype demonstrating successful detector
simulation, conditioned by the energy of the primary particle,
entering the detector perpendicularly to its surface [9]. This
represented a simplification, given that in real-life conditions,
particles usually hit the detectors from different directions.
The model was revised to learn a joint probability distribution
of both the incident particle energy and its direction (quanti-
fied by the incident angle). At this stage, we also increased the
image size and added new domain-related features (details in
Section IV) in order to improve the accuracy of the results.
Some preliminary results for this configuration were pre-
sented in [10], where the training was run for a small number
of epochs and the result validation was limited. The current
work refines the results and describes the architecture, train-
ing process, and pre-processing in more detail. The physics-
based analysis of the results is presented in greater detail
along with additional performance studies from other view-
points. These include classification and regression results by
a third-party network pre-trained on the same data set, as well
as a more detailed investigation using image quality metrics
as a function of input conditions.

Our work on 3DGAN is relevant both to the field of com-
puter vision and image processing as well as High Energy
Physics. It represents an example of a successful applica-
tion of algorithms designed for image processing, to scien-
tific simulation, exhibiting very different characteristics and
requiring a higher level of accuracy. It is a fast alternative
to detailed Monte Carlo simulation that results in a speedup
greater than three orders of magnitude, which would be diffi-
cult to achieve using other approaches. The work also demon-
strates the possibility of adding domain related constraints to
the process of image generation and represents a successful
example of transfer learning. The simulation of detector out-
put poses an interesting problem since the stochastic nature
of particle interactions results in unique images, yet unlike
most vision applications these images exhibit well-defined
distributions for observable physics features. Thus both the
realism and diversity of the simulated data can be assessed
on the basis of these features.

This paper is organized as follows. Section II will briefly
review related work focusing on HEP applications. It will
be followed by a description of the training data set and the
features used for the evaluation of the results in Section III.
The current approach will then be presented in Section IV,
together with details on the loss function and the network

architecture. The main design choices made during the devel-
opment process will also be discussed. Validation of the
results from a physics perspective is accomplished by a
detailed comparison of GAN and Monte Carlo as presented
in Section V. This section also includes an investigation of
additional validation metrics (e.g. structural similarity index)
inspired from the image processing domain.Wewill conclude
by summarizing our main contributions and suggestions for
future work in Section VI.

II. PREVIOUS WORK
Generative models represent a fundamental part of deep
learning. Over the years this field has seen developments in
the Generative Stochastic Networks [11], to the Variational
AutoEncoders [12], and Generative Adversarial Networks
(GAN) [13]. In particular, Generative Adversarial Networks
can successfully generate sharp and realistic images with
high resolution [13]. Inspired by the Game Theory [14],
adversarial training is defined as a competition between two
players: a generator and a discriminator. The discriminator
distinguishes real from fake images while the generator tries
to fool the discriminator by producing an output as realistic
as possible. The process eventually results in the generator
learning the distribution of the real data if given enough
representation capacity and time.

There are many variants of the GAN methodology, such
as WGAN [15], StackGAN [16], ProgressiveGAN [17] etc.,
demonstrating the generation of high quality and high reso-
lution images. The GAN does not rely on the explicit com-
putation of probability densities and is thus suitable for a
wider range of applications. Presently this approach has been
applied to problems frommany domains: ranging from gener-
ating musical notes [18], to natural language [19], to medical
data [20], [21], to natural scenes [13] and image denois-
ing [22]. The adversarial approach has also been successfully
applied to anomaly detection tasks for industrial [23] and
medical [24] applications. Similarly, scientific simulation is
another domain where GAN has shown immense success.
Astro-physics [25], [26], micorbiology [27], and material
composition [28], etc., are some of the avenues explored.

The LAGAN [29] and CALOGAN [30] models introduce
the idea of using GAN for High Energy Physics shower simu-
lation as two-dimensional images for a simplified calorimeter
use case. Since then, there have been other demonstra-
tions employing deep learning for HEP calorimeter simu-
lation [31]–[33]. The 3DGAN takes inspiration from the
ACGAN [34] approach but conditions the input on a set of
continuous variables, combined with additional constraints
to improve physics accuracy [9], [10]. A recent work [35]
takes a different approach and introduces the model-assisted
GAN, where the simulation is conditioned by a set of model
parameters. The GAN learns the true distribution of model
parameters from experimental data and applies this informa-
tion to the external simulator to reproduce the images more
accurately, as well as train a neural network (the emulator)
to mimic the simulator response. The approach is verified for
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two simple test cases involving 2D images. It is a preliminary
study and has yet to prove if the technique can withstand the
complexity of a realistic HEP simulation. The approach is
not yet applicable to the high-granularity future calorimeter
(simulated by the 3DGAN) where the experimental data is
not available. The 3DGAN input parameters include only the
simulation conditions sampled from a uniform distribution,
whereas the physics features are learned implicitly that we
believe to be a more powerful approach and requires a single
network (the generator) for inference, instead of utilizing a
generator to generate the distribution of the model features
and an emulator to generate the simulation output. Apart from
these differences, the time-consuming Monte Carlo simula-
tion, the large range of the input variables, the large size of
the 3D images, and the training data are not suitable for the
lengthy training setup of the approach. Unlike the model-
assisted GAN, the 3DGAN predicts the input conditions from
the generated images as feedback and also imposes hard
domain-related constraints as deterministic functions of the
images that are crucial to achieving the level of accuracy
required. The 3DGAN [9], [10] is the first application for
3D convolutions to simulate a high granularity calorimeter.
There is a similar later effort [36] employing 3D convolutions,
although for only orthogonally incident particles coming
with energy from a limited range and with smaller image
dimensions.

The novelty of our work resides in the high granularity
(high spatial resolution) of the detector we simulate and in
the use of three-dimensional convolutions that are essential
to preserving all spatial correlations between pixels. Our
particular pre-processing, loss function, and two-step training
results in high accuracy for a more complex scenario in
comparison to other GAN applications for HEP calorimeter
simulation, involving a wider range of input variables used
for conditioning.

III. DATA SET
The current work is based on the detailed Monte Carlo simu-
lation data for the proposed high granularity Linear Collider
Detector (LCD) [38] geometry, designed in the context of the
Compact Linear Collider (CLIC) accelerator [39]. The data
are generated using the GEANT4 toolkit [40] that is the state
of the art platform for the simulation of particle transport
through matter (based on the Monte Carlo methods) and the
most widely used package in the particle physics community.
Figure 1 presents the proposed detector design with a highly
segmented calorimeter. We limit our study to the electromag-
netic calorimeter (ECAL) located in the cylindrical region
of the LCD calorimeter: a grid of 5.1mm3 cells, with an
inner radius of 1.5mm and 25 concentric layers. The data
include several particle types (i.e. electrons, photons, neutral,
and charged pions) and is publicly available on Zenodo at
https://zenodo.org/communities/mpp-hep.

The incoming particle creates an avalanche of secondary
particles as it traverses the detector thus generating a
characteristic energy deposit pattern (called a ‘‘shower’’).

FIGURE 1. Schematic diagram for the CLIC calorimeter [37].

Each entry or event in the data set corresponds to an array
of cells centered around the barycenter of the particle shower
as a three dimensional 51 × 51 × 25 pixelized image. The
pixel intensities of this image are the energy depositions
for the calorimeter cells. The energy (EP) and the incident
angle (θ) of the original particle (‘‘primary particle’’) are
also stored with each event. The data consist of particles
with the EP range of 2GeV to 500GeV and θ range of 60◦

to 120◦. The training uses 137, 342 electron events with EP
restricted to the range of 100GeV to 200GeV for the first
step and 400, 000 events with EP from 2GeV to 500GeV for
the second training step. The data is divided into a ratio of
nine to one for train and test sets.While additional data is used
for the validation and detailed analysis presented in Section V
(filtered for specific energies and angles from sets of
50, 000 and 100, 000 events respectively).

The physical characteristics of a particle shower are
defined by the underlying physics processes, the particle type,
its energy, and incident angle. The 2D projections on differ-
ent planes can be used to convey visual information.1 The
geometry of a shower is essential information for particle type
and energy identification. Frequently used geometrical fea-
tures consist of shower shapes, moments, and ratio of energy
deposited in different parts of a shower. The shower shapes
are represented by the energies deposited along different axes.
Shower moments are another way of defining the shower
geometry. The first moment (M1) corresponds to shower
center, the second moment (M2) to shower width, and sim-
ilarly higher moments to higher-order features. The fraction
of energy deposited in different parts of the shower is studied
by dividing the shower into three parts and comparing the
fraction of total energy deposited in the first eight cells (R1),
the middle nine cells (R2), and the last eight cells (R3).

Each event consists of a shower surrounded by a largely
sparse region (typically less than 20% cells in a shower
receive some energy deposits). We measure the sparsity as
the fraction of cells with deposited energy above a certain

1The Z axis lies along the detector depth and X , Y are the transverse axes.
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threshold (1 − S). The number of cells above a threshold
is also denoted by hits (H ). The ratio of the total recorded
energy (Esum) in the active layers of the calorimeter and the
corresponding EP represents the ‘‘sampling fraction’’ (SF).
It defines the calorimeter response and is a characteristic of
both the detector itself and of the incoming primary particle.

IV. THE 3D CONVOLUTIONAL GAN
The 3DGAN represents the first proof of concept for the
possibility of using 3D convolutional GANs to simulate high
granularity calorimeters. Our network is inspired from the
Auxiliary Classifier GANs (ACGAN) [34] and InfoGAN [41]
concepts. These architectures are a natural extension of the
GAN approach and feature a faster convergence and more
stable performance by introducing auxiliary tasks for the
discriminator. The GAN application to simulation requires
the generation of images conditioned on a set of continuous
inputs, thus introducing auxiliary tasks such as regression on
the conditioning variables, not only stabilize the training but
also provide feedback on the conditioning. With the advent
of representation learning through deeper models, domain
knowledge is often not required [42]. We present an example
of combining deep learning with domain related constraints
since scientific simulations must conform to scientific laws.

FIGURE 2. The cell energy distribution for Monte Carlo events vs. GAN
generated events. (Left) pre-processing by taking the power of pixel
intensities for: p = 0.85 (blue); p = 0.75 (green); p = 0.5 (cyan);
p = 0.25 (magenta). (Right) the distribution of the highly sparse region
near the periphery along the transverse dimensions (X and Y axes) for
generator with: alternative upsampling and convolutional
layers (magenta); upsampling before the convolutions (blue).

A. PRE-PROCESSING
One of the challenges in applying image generation tech-
niques to the simulation of detector output lies in the large
dynamic range of the deposited energies in detector cells as
compared to pixel intensities in a typical RGB image. The cell
energy deposits can vary over a large range spanning more
than ten orders of magnitude as shown in Figure 2 (right).
We explored different pre-processing procedures aimed at
reducing this dynamic range. The initial tests using the log
of the pixel intensity yielded unsatisfactory results (highly
distorted images). We also experimented with the power
function of pixel intensities using an exponent (p) smaller
than one. We observed that a smaller exponent means faster
convergence but greater distortion. Figure 2 (right panel)
compares the pixel intensity distribution for different values
of the exponent. An optimum value of 0.85 improve the

convergence while retaining accuracy at both ends of the
spectrum. The generated images can be transformed back to
the original range by simply taking the inverse of the power
function.

B. THE ARCHITECTURE
The design of the 3DGAN architecture required a long
and tedious process of trial and error, as well as conven-
tions and suggestions from past efforts. The long training
times and practically unlimited choice of architectural hyper-
parameters do not allow an exhaustive search of the entire
design space, although the model development and opti-
mization involved extensive investigation of different model
parameters. The 3DGAN initial prototype [9] architecture
was inspired by the DCGAN [43] architecture: employing
four convolutional layers in both the generator and the dis-
criminator networks. The upsampling layers followed the
first two convolutional layers in the generator.

Figure 3 shows the final optimized architecture for the
discriminator (D) and the generator (G). The latent space
is a vector of 254 random numbers drawn from a Gaussian
distribution. The input conditions EP and θ are concatenated
to this latent vector to create the generator input. The initial
prototype [9] used a Hadamard product of the condition EP
and the latent vector. For the more complex scenario with
multiple input conditions, we find that simply concatenating
the conditions to the latent vector provides a more compact
approach with better overall accuracy. A set of upsampling
layers, at the beginning of the generator network, are used
to reach the required dimensions before the application of
the convolutions [44]. The initial prototype [9] consisted
of alternating upsampling layers and convolutional layers
similar to ACGAN [45]. By moving the upsampling layers
before convolutions we have improved the generator learning
process, obtaining a more realistic output. The improvement
is most significant for the simulation of cells with very small
energy deposits, occurring mostly in the peripheral regions of
the image as presented in Figure 2 left panel. The 3DGAN
has a stronger generator (seven convolutional layers) than
the discriminator (with four layers) in order to cope with the
increase in image complexity. A gradually decreasing kernel
is used for the generator (to generate more local features
in higher-order layers). The geometry of the energy shower,
extending along the length of the longitudinal dimension,
while being narrow for the transverse dimensions, influenced
the choice of the generator kernels in the Z dimension, which
are kept larger. Experimentation with kernels did not have
any significant effect on model performance thus number of
filters and kernel sizes are further adjusted in consideration
to memory constraints and image dimensions.

Batch normalization [46] (with a smaller fuzz factor
of 10−6) is applied to all except the first convolutional layer
in the discriminator and the last two layers in the generator,
these exclusions are aimed at encouraging the large dynamic
range for the pixel intensities. Relu [47] activation function
is used for the generator layers to induce sparsity while the
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FIGURE 3. The 3DGAN architecture, see the text for details.

leakyRelu [48] is used for the discriminator hidden layers.
The discriminator is regularized by a dropout [49] of 20%
and a single average pooling layer after the last convolutional
layer (additional pooling layers result in substantial loss of
performance).

The discriminator network has two trainable outputs:
OGAN estimates the GAN real/fake probability via a sigmoid
neuron and OP predicts EP as an auxiliary regression task
through a linear neuron. Two additional outputs are imple-
mented as analytical functions of the input image, accom-
plished through lambda layers representing non-trainable
physics-based constraints. The Osum is the total deposited
energy (Esum =

∑
Ipixel) and Oθ is the measured incident

angle calculated as a weighted mean of measured angles
exploiting the slopes of the lines joining the barycenter of
the energy deposition of the event, to the barycenters for the
XY planes at each position along the Z axis (weighted by
the position along the Z axis). Another constraint enforcing
pixel intensities distribution was included in our previous
contribution [10], but further tests indicated that constraint
to be ineffective, and thus our final model is simplified by
removing the redundant output. The architecture is imple-
mented using Keras 2.2.4 [50] (with Tensorflow 1.14.0 [51]
as a backend).2

C. LOSS FUNCTION
The 3DGAN loss function is built from the weighted sum of
individual terms pertaining to the discriminator outputs and
constraints. The introduction of domain-related constraints is
essential to achieve a high level of accuracy. Figure 4 shows
the effect of constraining the Esum. Without the constraint,

2The code is available at https://github.com/svalleco/3Dgan

FIGURE 4. The GAN performance without Esum constraint (magenta) and
with the constraint (green and blue), demonstrated by a comparison
between Monte Carlo and GAN generated events for Esum vs. EP (left)
and SF vs. EP (right). (initial prototype [9]).

Esum for generated images has a roughly uniform distribution,
but only after applying the constraint, the sum is correctly
mapped toEP. It should be noted that by constraining the total
deposited energy we make sure that the energy conservation
is preserved.

Equation (1) shows the different components of the dis-
criminator loss: the discriminator real/fake probability as
defined in [13] (LG), the primary particle energy regres-
sion (LP), the total deposited energy (LE ), and incident angle
measurement (LA). The losses are balanced by the corre-
sponding weightsW . The LP and Lθ provide feedback on the
conditioning of the image, while LE and LA help to impose
external constraints on the images. The generator loss is
implemented as the inverse of LG together with the auxiliary
losses and constraints.

L3DGAN = WGLG +WPLP +WALA +WELE (1)

The loss components presented in Equation (1) are based
on different errors. LG is implemented as binary cross-
entropy. LP and LE are evaluated as the mean absolute
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percentage error (MAPE), while LA is evaluated as the mean
absolute error (MAE). Figure 4 also demonstrates how the
choice of the error for the loss term affects the quality of
results. As Osum and OP are both correlated to pixel inten-
sities, thus a percentage error results in better performance
especially at the lower end of the spectrum where smaller
energies are deposited. Apart from some degradation in
both simulating and predicting these low intensities, a slight
energy difference at the lower end would result in a tiny
absolute error but a larger percentage error (thus a larger
gradient), therefore improving the training for this region.

The loss weights are selected roughly following the guide-
lines by Chollet [52] according to the type of losses, probable
values at convergence, and relative importance. The losses
based on mean percentage error are assigned a weight of 0.1.
The WA is assigned a value of 25 and the BCE losses are
assigned a weight of 3. A high level of accuracy is required
for the correct Esum of the generated images. Increasing the
weightWE fails to improve the performance on LE as shown
in Figure 5 (right), while the performance on LG deterio-
rates (left). Therefore we add another step to select the final
network based on the minimum mean absolute relative error
on the sampling fraction (using additional holdout samples),
in the last ten epochs so as to retain a high level of accuracy
on this quantity.

FIGURE 5. The 3DGAN generator test losses for loss weight WE equal to
0.1 (cyan) and 0.2 (orange). (Left) LG vs. epochs. (Right) LE vs. epochs.
(initial prototype [9]).

D. TRAINING
The GAN training converges when the discriminator cannot
discriminate between real and fake samples. The discrimina-
tor estimates a real/fake probability close to 50% for both the
real and fake images. The convergence for the simulation of
the more complex scenario involving both EP and θ could
not be accomplished directly, only restricting the EP range
could finally allow the training to converge. We thus apply a
two-step training based on the transfer learning to simulate
the full EP range. During the first step, we train 3DGAN on
events with EP in the 100GeV to 200GeV range. The second
training step extends the data to events havingEP from the full
2GeV to 500GeV range. The final network is further selected
based on the minimummean relative error (see Section V-F2)
on SF in the last ten epochs, evaluated on additional holdout
samples.

For each iteration, we train the discriminator on a batch
of real images and a batch of generated images (applying
label switching) [53]. Adopting a balanced approach, we also
train the generator twice while freezing the discriminator
weights. Another modification applied to the GAN training
process involves generating the fake image batch for the same
input conditions as the real image batch instead of randomly
sampling the input conditions. Thus not only alleviating the
need to find the complex mapping of EP to Esum, as well as
having to apply it at run time (as performed in [9]). A speedup
of more than 30% could be achieved for the processing time
per epoch, as well as removing any chances of error due to
inaccurate mapping. A number of optimizers and learning
rates were investigated. The RMSProp [54] optimizer with
a learning rate of 0.001 was finally selected on the basis of
performance, to train the network through Stochastic Gradi-
ent Descent in mini-batches of 64 events since larger batch
sizes could not be supported due to memory constraints.

FIGURE 6. The 3DGAN test losses. (Left) LG loss for the generator
(continuous line) and the discriminator (dashed line): applying the
configuration of the initial prototype [9] to the variable angle data does
not work (teal); pre-processing for the reduction of the pixel intensity
dynamic range and additional loss terms improved convergence (orange);
architecture optimization (with upsampling layers at the beginning and
more convolutional layers further improved the results (red). See text for
additional details. (Right) The real/fake probability (OGAN ) for both the
Monte Carlo (red) and GAN generated events (blue dotted) is close to 0.5.

Figure 6 right panel compares the LG test losses at dif-
ferent stages of the current work for the restricted EP range.
Restricting the EP range started showing some improvement
in the training losses for the initial configuration [9] but the
test losses (blue) remain highly random. Implementing the
pre-processing step as explained in section IV-A, adjusting
the losses, and generating images for the same inputs as real
images denote the training optimization (orange), that allows
the losses to start converging. The architecture optimization
involves upsampling before convolutions and additional lay-
ers in the generator (red), resulting in decreasing the loss
further and improving the convergence (the GAN could still
not converge for the full EP range directly thus necessitating
the two-step training). The left panel shows how the real/fake
probability (OGAN ) estimated by the discriminator for the real
(red) and the fake (blue) images, has very similar distribu-
tions, at the end of training.

For the restricted energy range (the first training step)
the training runs in 2 hours per epoch on a single NVIDIA
GeForce GTX 1080 card for 130 epochs. The second training
step using an increased number of events from the whole
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energy range from 2GeV to 500GeV (every epoch lasts four
hours), is run for 30 epochs. The training time is limited due
to time constraints although over-fitting is not observed even
training far beyond these limits, while very little improvement
is observed.

V. RESULTS AND DISCUSSION
As mentioned in Section I, the 3DGAN results cannot be
compared directly to previous approaches as the problem is
more complex. We thus validate the 3DGAN performance
by a detailed comparison to the Monte Carlo simulation.
Established fast simulation approaches report an accuracy
within 10% of the Monte Carlo, thus we aim to achieve
a similar level for the GAN generated events. We test the
distributions of several physics quantities as a function of the
main inputs to the simulation process (EP and θ ). In order
to do so, we select events in 5GeV bins for EP and 0.1 rad
(5.73◦) bins for θ , as well as some unbinned events, from
the unseen data of 100, 000 random events. The comparisons
are performed with GAN events generated for the same EP
and θ values as the MC events. We have computed the mean
absolute relative errors for the histogram bins (BMRE). The
detailed physics validation involves numerous feature distri-
butions compared for different input bins, thus resulting in
hundreds of histograms. The GAN generated events have a
close agreement with theMonte Carlo, greatly surpassing our
aimed accuracy level for most of the physics features. Only
a few representative features are presented here in order to
simplify the discussion.

FIGURE 7. Example 2D shower sections [log] on the YZ , XZ , and XY
planes with Ep and θ sampled from both ends of their respective spectra.
The GAN events are generated for the same EP and θ values as the MC
events. EP = 48.85 GeV and θ = 63.65◦ (top two rows). EP = 396.9 GeV
and θ = 119.18◦ (bottom two rows).

A. VISUAL COMPARISON
In order to perform a preliminary visual inspection of the
results, we build 2D projections on different planes of
three dimensional events. Figure 7 presents an example of

2D sections of the MC and GAN showers corresponding
to electrons entering the calorimeter with different energies
and angles (selected from the tails of the energy and angle
distributions). The images appear visually similar, sharp, and
unique.

B. SAMPLING FRACTION AND CALORIMETER RESPONSE
As explained earlier the Sampling Fraction (SF), is correlated
to the amount of energy recorded by the calorimeter and it
depends on the particular detector geometry and the primary
particle type and energy. Figure 8 demonstrates the close
agreement over the entire energy range for both ends of the
θ spectrum. It should be noted here that although for the 62◦

bin there is a slightly lower SF for the GAN images, yet the
difference is very small with a mean absolute relative error of
a few percent for the histogram bins.

FIGURE 8. The sampling fraction for Monte Carlo vs. GAN events with EP
from 2 GeV to 500 GeV. The θ values are from 62◦ bin (left) and
118◦ bin (right).

FIGURE 9. Shower Shapes for Monte Carlo vs. GAN events along X , Y ,
and Z axis with EP range of 2 GeV to 500 GeV. The shapes for events with
θ range of 60◦ to 120◦ are plotted on linear y-scale (left column), and bins
of 62◦ and 118◦ on logarithmic y-scales (two columns on the right).

C. PARTICLE SHOWER SHAPES
Figure 9 presents the energy profiles for the showers along
the X , Y and Z axes, both in linear (full θ range of
60◦ to 120◦) and log scale (62◦ and 118◦ bins of θ ). The
network is capable of correctly reproducing the spatial dis-
tribution of energy deposits as a function of the incident
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FIGURE 10. Shower shapes along the Z axis for Monte Carlo vs. GAN
events in different primary energy bins. (Left) EP = 100 GeV.
(Right) EP = 400 GeV.

angle, across a large dynamic range. In the log scale, some
discrepancies are observed at the edges of the simulated vol-
umes, where smaller energy depositions occur. The amount
of energy expected in this region (well below 10−4 GeV) is
below the threshold for this detector and comparable to the
pedestal values. Figure 10 presents the longitudinal projec-
tion (XY ) for the MC and GAN showers for some EP bins
proving that the agreement in shapes is maintained along the
entire spectrum.

D. SPARSITY AND CELL ENERGY DISTRIBUTION
The detector cells are mostly empty with energy deposited
only in less than 20% of them. Figure 11 (right) shows the
fraction of cells where some energy is deposited as a function
of the threshold used for the cutoff. It can be seen that the
Monte Carlo and GAN images present a similar level of
sparsity. The energies deposited in the calorimeter cells are
our pixels intensities. Figure 11 (left) shows the MC and the
GAN agreement in terms of pixel intensities down to very low
values. It should be noted that at around 0.2× 10−3GeV the
MC intensities show a sharp, vertical drop. As expected the
GAN smooths out this cut.

FIGURE 11. Monte Carlo vs. GAN shower features for 2 GeV to 500 GeV
electrons show close agreement. (Left) Cell energy distributions. (Right)
Sparsity as the fraction of cells above a threshold for different values of
threshold.

E. CORRELATIONS
We study the internal correlation between shower features
as well as the correlation between MC and GAN images.
The correlations among different shower features and the
inputs i.e. energy and angle should be preserved. We eval-
uate the correlation matrix calculated on different quantities
such as the shower shapes, Esum, EP, |90◦ − θ |, and num-
bers of hits above a threshold (0.2× 10−3GeV). Figure 12,
the left panel, presents the difference between the internal

FIGURE 12. (Left) The difference between correlation matrices exhibiting
internal correlations among shower inputs and physics features for
Monte Carlo and GAN generated events. (Right) Correlation between
θ measured from Monte Carlo events and that measured from GAN
events generated for similar θ values.

correlations present in the MC data and those of the GAN
images. These correlations agree to a considerable extent
with a mean error of less than 10%. The incident angle θ
measured in MC and GAN, shown in Figure 12, right panel,
also presents a high level of agreement.

F. FURTHER VALIDATION
The main validation of 3DGAN performance involved
detailed comparison of physics-based features across the
whole range of the primary energies and the incident angles
as explained in Section III. We have further explored valida-
tion from diverse standpoints including further mathematical
formulation of the physics performance, as well as validation
by a neural network and image quality metrics.

FIGURE 13. Triforce results for GAN vs. Monte Carlo events (9834 electron
events for each type). (Left) Classification accuracy. (Right) Scatter plot
between true and predicted EP .

1) VALIDATION BY THIRD PARTY NETWORK
The most popular metrics used in GAN literature involve
an external pre-trained network. Similar to what is done in
general image generation problems, where the output of the
inception network is used to quantify the generated image
quality [55], [56], we have used the independently devel-
oped pre-trained (trained on the same dataset) classifier and
regressor network from Triforce [57] to validate our results.
We stress here that the actual accuracy is not relevant for
our test as that depends on the Triforce performance, but
obtaining a similar performance level for GAN and MC
events is. Figure 13 shows the classification and regression
results obtained by running Triforce on 9834 images from
both GAN and MC test samples. The GAN images show a
similar response from the Triforce network, as MC images.
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Thus proving that the GAN images contain most of the fea-
tures of the MC data, as learnt by the Triforce network.

2) QUANTIFYING PHYSICS PERFORMANCE
The physics performance validated in Section V is based on
the study of binned distributions, therefore we test several
histogram distances. The metrics like Chi2 and Kolmogorov
get saturated for small discrepancies in a few bins. These
metrics are highly dependent on external factors like binning
and ranges and thus are not suitable for combining as aver-
ages. On the other hand, mean errors do not describe well the
performance over the whole distribution. In order to further
quantify the performance, we calculate the relative errors for
individual bins of a distribution. The mean of all bin errors
is then treated as a metric. We have calculated this metric
on physics features like the shower shapes, moments, and
sampling fraction. These metrics can also be combined as a
single figure for a future hyper-parameter effort.

FIGURE 14. Mean relative errors on shower shapes for the first training
step with restricted EP range. (Left) Initial implementation without
optimization (red), with pre-processing and additional losses (green), and
after applying architecture modifications (blue). (Right) Reducing the
Y axis scale to observe the error for the 3DGAN final version (blue),
where it can be seen that the error is now saturated for further analysis.

In the current work we will only explore the metric as a
function of training epochs for the different stages of 3DGAN
development. The shower shapes provide an example of geo-
metrical features that are learned by the model implicitly.
Figure 14 presents the error for shower shapes associatedwith
different versions of 3DGAN as described in Section IV-D
for the first step of training (with restricted EP range). The
initial configuration has high errors with mean and variance
decreasing with epochs (red). The high values of error can be
attributed to the tails of the distributions, where the energy
deposition is very low. The training optimization greatly
reduces the error yet a slight over-fitting can be detected in
the later epochs (green). In the final implementation (blue)
the shape distributions improve significantly. As observed
from Figure 14 right panel, the training has reached a level
where the error remains low yet not decreasing much with
the epochs and the MRE metric seems to be saturated.

The sampling fraction is an example of analytical func-
tions of the image. The simulation requires a very precise
SF and its small variation through epochs is significant for
performance. Figure 15 right panel presents the error on SF
averaged over 5 epochs. It can be observed that the error is
below 10% for most of the training but in order to further

FIGURE 15. Validation of the 3DGAN final version for the restricted
energy range training step. (Left) Mean relative error for SF vs. epochs
(with average smoothing of order 5). (Right) Entropic Gromove
Wasserstein Discrepancy calculated on correlation matrix vs. epochs (with
average smoothing of order 5).

improve the accuracy, we select the final network among
the last few epochs (10 for current application) based on the
minimum mean relative error, evaluated on holdout samples.

The Wasserstein Discrepancy [58] is the next figure of
merit we have tested. The Wasserstein distance [59] is an
optimal transport distancemetric that can be used for compar-
ison of distributions. Wasserstein Discrepancy is measured
on ‘‘similarity matrices’’ from two sets of samples. We have
computed the Wasserstein Discrepancy from the correlation
matrix (Figure 12). Figure 15, the right panel, presents the
metric (with average smoothing) as the training progresses
through epochs. There is a steady decrease in both mean
and variance (even after mean relative errors presented in
Figure 14 cease to improve).

3) IMAGE QUALITY ANALYSIS
The assessment of the similarity/diversity of the generated
sample compared to the original sample is an important step
for the development of generative models. In the case of
simulation, the shower produced by particles with the same
EP and θ should show similar features while retaining the
expected statistical variance. In order to evaluate this aspect,
we utilize some metrics for image quality assessment.

The Structural Similarity Index Measure (SSIM) [60] has
been used for GAN performance evaluation [34]. The SSIM
quantifies the quality of images based on their similarity
to a reference. For images x and y, the SSIM is computed
between windows from both x and y. If the mean and standard
deviation of both windows areµx , σx andµy, σy respectively,
then SSIM is given by the following equation (2):

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(2)

where C1 = (k1 L)2 and C2 = (k2 L)2 with k1 = 0.01 and
k2 = 0.03. The value of ‘‘L’’ is usually taken to be equal to the
dynamic range of the pixel intensities. The parameter L thus
determines the fuzz factor added against the weak denomi-
nator to avoid zero division. A value of SSIM close to one
indicates very similar images while a lower value indicates
more diverse images. In the context of GAN, the similarity
metric is also treated as a measure of diversity.
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The SSIM is sensitive to the pixel dynamic range (by the
virtue of parameter L) and should be adjusted accordingly.
Figure 11 (left) shows that our ‘‘pixel intensities’’ have a
very different dynamic range as compared to the standard
RGB case, with a logarithmic difference between the max-
imum and minimum values. Therefore, the experiment is
repeated for different values of L in order to verify the
sensitivity of the SSIM to our range of pixel intensities
(energy depositions).

Wemeasure SSIM forMC images againstMC images,MC
images against GAN images, and GAN images against GAN
images. The events in each set are random events from the
same EP and θ bin. The SSIM value fromMC vs. MC images
can act as a reference to assess the GAN performance.

FIGURE 16. SSIM for L = 1 (top row) and L = 0.0001 (bottom row). The
SSIM is computed for MC vs. GAN events (red), MC vs. MC events (blue),
and GAN vs. GAN events (magenta) as a function of EP . (Left column)
θ = 62◦ bin. (Right column) θ = 118◦ bin.

The SSIM value for L = 1 (as generally suggested for
float intensities) is close to one and identical for all three
sets of images as shown in Figure 16 top row, indicating that
the index is not sensitive to the difference present between
individual samples in a bin at this scale. The SSIM values
decrease with L and a difference can be observed between
MC vs. MC and GAN vs. GAN (indicating that the metric is
nowmore sensitive). Decreasing L below 10−4, has no further
effect. Figure 16 bottom row shows the SSIM for L equal to
10−4. The GANvs. GANSSIM is slightly higher thanMC vs.
MC, indicating that the GAN samples have less diversity in a
bin, but is of the same order. The SSIM for MC vs. GAN is
similar to MC vs. MC, proving that GAN images come from
the same distribution as MC images. The figure also shows
that SSIM is constant across the θ spectrum.
The Mean Subtracted Contrast Normalized Coefficients

(MSCN Coefficients) [61] have been used for blind image
quality assessment. TheMSCNCoefficients are computed by
taking the mean and the standard deviation of windows in an
image. Let µ and σ be the mean and standard deviation of an

image window then a pixel intensity I will be converted to
coefficient I∗ by the following equation:

I∗ =
(I − µ)
σ

(3)

TheseMSCNCoefficients can then be mapped to an image
quality score [61]. The distributions of the MSCN Coeffi-
cients from real and fake images have also been used for GAN
evaluation [62]. The 3DGAN images are highly sparse with
small energy depositions thus the Equation (3) is modified as
following :

I∗ =
(I − µnonzero)

σnonzero + epsilon
(4)

Here we stabilize by adding a fuzz factor in the denomina-
tor (taking epsilon value equal to 10−7). The mean (µnonzero)
and the standard deviation (σnonzero) are evaluated consider-
ing only the nonzero entries. Figure 17 compares the his-
tograms of the coefficients as computed using Equation (4)
for MC and GAN generated images. The nature of our data is
very different from natural scenes and thus the distributions
are not Gaussian. The MSCN Coefficient distributions can
still be treated as statistical signatures and are almost identical
for the real and fake images, showing very similar features.
The Jensen Shannon Distance (JSD) between the real and
fake distributions is very small, thus indicating the histograms
to be highly similar.

FIGURE 17. MSCN coefficient histograms for MC and GAN images for
EP = 2− 500 GeV. Left) θ = 62◦. Right) θ = 118◦. The JSD denotes the
Jensen Shannon Distance between the two distributions.

VI. CONCLUSION
The Monte Carlo simulation of detector response is a time
and resource intensive task. There is a drive in the HEP com-
munity to find possible fast alternatives while maintaining
physics accuracy. Fastsim is a set of established techniques
usually replacing parts of the detailed simulation where some
loss in accuracy can be traded for speed. These techniques
have been incorporated into existing particle simulation pack-
ages frequently employed in practical applications such as
GFlash [5], Altfast [4], and FastCaloSim [63] etc. We demon-
strate that the fast simulation based on deep learning can
surpass these methodologies both in speed and accuracy.
The detector response can be generated as images and easily
integrated into a detailed simulation, in the same manner as
existing fast simulation methodologies.
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The 3DGAN model is capable of reproducing single par-
ticle (electron) showers for a high granularity calorimeter
representative of detectors designed for future particle accel-
erators. We have validated the 3DGAN performance by com-
paring it with the classical Monte Carlo in great detail. The
agreement is within a few percent over a very large dynamic
range. This impressive level of agreement surpasses similar
deep learning-based applications to HEP simulation [30] and
fast simulation approaches based on classical methods [5].
The inference time on Intel Xeon 8180 is about 13.4m sec
per particle whereas about 3.5m sec per particle on GeForce
GTX 1080. For comparison, GEANT4 can simulate a similar
shower in about 17 seconds per particle on an Intel Xeon
8180 (currently it is not possible to run a full GEANT4-based
simulation on GPUs). Therefore, the 3DGAN provides three
orders of magnitude speedup.

The main R&D directions we are following are the inves-
tigation into the generation of rare modes, the generalization
of the model for different particles and detectors as well as
the inclusion of other detector information. Methods such
as ensembling [64] or mode regularization [65] techniques
can be employed to improve the performance for rare modes
present in the data. The 3DGAN approach for calorimeter
simulation has been applied to the electron showers and
the same methodology can be extended to other types of
particles. The simulation of some particles might require the
inclusion of further detector information. The current fastsim
approaches are specific to a particular type of detector due to
the great variation present in the design of different detectors.
The detector geometry defines the overall detector layout,
material, cell size, and consequently image dimensions and
features. All of these factors contribute to the characteristics
of the data and thus require specific optimization of the archi-
tecture and the training procedure. The GAN technique can
be exploited for simulation of any detector output as an image
but the current methodologies require individual adaptation
and development for best performance. Some preliminary
efforts towards future generalization in terms of detector
geometry have been undertaken. A hyper-parameter scan can
facilitate automatic tuning at the cost of extremely long train-
ing times (not currently feasible). A distributed computing
approach [66], [67] was explored to decrease the training
time for future development towards hyper-parameter opti-
mization. A preliminary investigation was also conducted to
explore the Genetic Algorithm that can optimize both weights
and architecture at the same time [67].
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