

RNTHAACHE

Quantum Machine Learning for HEP Detector Simulations

GRID 2021

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

06.07.2021

Future Simulations

Replace Calorimeter Monte Carlo Simulations

Previously: Deep Learning

- → Developed a Deep Learning approach for calorimeter simulations which requires fewer computing resources compared to Geant4
 - DL GAN presentation (up to 160 000x speed up)
 - On 06.07.2021 at 14:45 in GRID "Big data Analytics and Machine" block
- Now:

Explore potential of quantum computing

- Make use of quantum properties (entanglement, superposition)
- Hope to solve problems faster and / or more accurately
- "Quantum Advantage" not yet reached \rightarrow only initial investigations
 - Understanding advantages and challenges
 - Using simplified models

cern in cern openlab

Training Data

- 3D particle shower images
- Average the image over z-axis \rightarrow 1D image
- Down sample to only 8 pixel
- Average all of input energies \rightarrow Only one distribution

500 GeV example

Particle

0

5

10

20

25

+Icells)

- 10-1

10-2

10-3

Energy

(GeV)

25

20

10 5

0

25

20

15

z [layers]

5

y [cells] 15

Hybrid qGAN

Quantum Generative Adversarial Networks

• Hybrid quantum – classical ansatz

1D Quantum GAN

1D Quantum Generator Circuit

- Only 1D 8-pixel images
 - 3 qubits $(2^3 = 8)$ in quantum generator circuit
 - 8 quantum states: |000>, |001>, |010>, |011>, |100>, |101>, |110>, |111>
- Modified a Qiskit qGAN model developed by IBM

Quantum Generator Circuit:

1D Quantum Simulator

Without Noise

PDF

Trained Model

→ Good results

Florian Rehm - GRID 2021

0.25

Optimize Training

- Training time ~ 1 day for 3000 epochs
 - → speeding training up
- Hyperparameter optimizations:
 - Higher learning rate
 - Implement exponential learning rate decay
 - Different generator and discriminator learning rate
 - Train discriminator more often than generator
- Results:
 - 10x speed up in training time
 → Only ~300 epochs instead of > 3000

CERN III CERN

Florian Rehm - GRID 2021

Relative Entropy

1D qGAN Robustness

 Run 23 trials with same hyperparameters

→ Stable training
 → On average good accuracy

1D qGAN with Noise

Readout Noise Only

- We applied readout noise to the qubit measurements
 - Noise model from IBMq belem quantum computer

Florian Rehm - GRID 2021

1D qGAN with Noise

Full Noise Model

• We applied noise to the qubit gates (readout noise + gate level noise)

- Noise model from IBMq belem quantum computer
- Average gate level noise: 4.32%

2D Quantum GAN

Florian Rehm - GRID 2021

2D Data Representation

- 2D: 8x8 = 64 pixels = $2^6 \rightarrow 6$ qubits
- 1. Down sample
- 2. 1D stacking
- 3. Apply logarithm

25x25 pixels

2D Quantum Generator Circuit

Tree Tensor Network Architecture

Best Results

• Run on quantum simulator without noise

qGAN Future Work

• 2D qGAN:

- Improve training convergence
 - Rare that training converges
- Decrease training time: recently ~5 days
 - Hyperparameter optimization
- 1D qGAN:
 - More tests with the full noise model
 - Test error mitigation techniques
 - Conditional qGAN

Quantum Machine Learning for HEP Detectors Simulations

Florian Rehm [CERN openlab, RWTH Aachen]

Sofia Vallecorsa [CERN openlab], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY]

Back Up Slides

Florian Rehm - GRID 2021

Backup: Amplitude Encoding

Amplitude Encoding (2 qubit example)State: $|00\rangle$ $|01\rangle$ $|10\rangle$ $|11\rangle$ Pixel Nb:0123

CERN openlab