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INTRODUCTION QUANTUM GAN

B Artificial noises are often injected in machine | | Hybrid model with a n-qubit quantum generator

INSTABILITY OF QGAN TRAINING ERROR MITIGATION
B Repeat the qGAN training with the giskit noise | | M We compare the training results with and without

1

learning for a more robust, more stable and faster and a classical discriminator [1] model with readout error only using the same hy- error mitigation method implemented by giskit.
converging model. perparameters and investigate its statistical error. 0.2
uantum Generator e — ' itioati
B Current and near future quantum devices still have . e . ‘_ g Without error mitigation
. . :q_0: 1 H iy RY(B[0]) ik : Classical Classical 5 - With error mitigation
considerable levels of noise. T e 1 Discriminator N —— Mean for n,e, = 20 © 0.1
B Possibility to replace the artificial noise in classical W O ¥ | £0.4- — Mean for n,,, = 100 %
ML with the intrinsic noise in quantum ML (QML). e : § ~ . . | |
Initialization Z 0.2 0.02 0.04 0.06 0.08
Evaluate Gradients & % th p robablhty, p
Update Parameters Y I T -
OBJECTIVES : 00. —— o RN I SN { :
- | | . | . Ottt bttt
B Investigate the impact of different errors in the . o 0 200 400 600 800 1000 o I |
. : : Figure 3: Schematic Diagram of qGAN. Epochs ' | | | | —
training of quantum Generative Adversarial Net- () — 0.01 0.02 0.04 0.06 0.08 0.10
works (qGAN) [1] for a simplified High-Ener . . . AP =" Flip probability, p
Physics ?HEP) e P & 5Y | | W Relative entropy (or Kullback-Leibler (KL) divergence) Figure 6: Mean (above) and standard deviation (below)
. Dkr(pllg) = >_,;p(j)log % as accuracy metrics. _ ——  Mean for 71,¢, = 20 of the final relative entropy, averaged over 20 simulations,
- Efgzi]écrilei 1?1 ;;é)tagf Eﬁi}griitgg/litudy to unfold the 30 . ——— Mean for nye, = 100 with and without error mitigation w.r.t. the readout error.
. 5 B Low readout error (p < 0.06) helps the qGAN train-
HYPERPARAMETER SCAN g ing, while error mitigation plays an important role
REDUCTION IN PROBLEM SIZE B We perform a scan on different subsets of hyperpa- 9 0-2 for high readout error.
We reduce the original calorimeter output size gen- ra1:1et1e o Qecay 1J;atle 7, generator [rg, and discrimi- ; 0 00 = 200 s B Large standard deviation in the relatiYg entropy
erated by Monte Carlo based Geant4 simulations nator learning ra e. 7°.d- | | | Epochs which cannot be overcome with error mitigation.
Use the longitudinal profile to estimate incoming W Test the qGAN training using a no1se.mo.de1 with (b) p=0.1
particle — sum energy distribution along longitu- readout error in form of bit flips occurring indepen- INCLUDING CNOT ERROR
dinal direction dently for each qubit with a flip probability p. Figure 4: Progress in relative entropy averaged over n,ep, =
o , 20 and 100 runs for p = 0.01 and 0.1. We run the training with a custom noise model con-
Average over 10,000 samples & bin into 2" pix- 1.00 - . .

5 o P P —— Best (p=0.01) T babil; —5 — sisting of 2.5% readout noise per qubit and 1.5%
els for n qubit quantum generator — probability of 2075/ Mean (p = 0.01) P probabiiity p lrep = 20 lirep = 100 two qubit gate level noise (called CNOT error)
getting state |k) = normalized energy at pixel k. g ‘ — Best(p—0.1) 0.01 0.026 £ 0.028 | 0.028 + 0.040 W fq dg timized h . t.

- = 0.501 _ 0.05 0.029 + 0.022 | 0.027 £ 0.020 € ound new optimized Nyperparameters to re-
— 0.50 Mean (p =0.1)
Ir}pu.t da.taset = scalars following the real energy = l ‘,‘ ’ 0.1 0.153 + 0.097 | 0.159 =+ 0.077 duce the number of epochs to only 300 while reach-
distribution = ' | ° 99 + U - - .
025 ' ' ' —— ing a good accuracy.
0.25 0.00 Table 1: Relative entropy at the end of the training
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: : ——— Mean without error mitigation
Epochs B The model is stable on the “ensemble” of simula- =

tions, but unstable for the individual runs.
— Fixed standard deviation despite increase in the
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@) (b) T 7 e he instability of th I b phoche
. ° L . | ' ' ' I B The instability of the qGAN model cannot be re- Figure 7: Progression in relative entropy using a custom
Figure 2: (a) Original calorimeter output generated by 0.0 0.2 0.4 0.6 0.8

solved even with large number of simulations. noise model with and without error mitigation.
— Further study going on to find the origin of the

Importance for objective value

Gec.m?él. (b) Reduced energy distribution used for our qGAN | |
training. (b) Hyperparamter importance instability. B For the chfc)seﬁ n0}selle§.els one Canif)t ste.e any im-
provement when including error mitigation.

Figure 5: Results of the scan on different hyperparameters Small levels of quantum noise help to improve the
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Effect of error mitigation in the full noise model | | B Train the qGAN on real quantum hardware.
and the real quantum hardware needs to be further
studied.

B Apply other error mitigation methods and compare
the resulting outcomes.



