
STUDY ON IMPACTS OF QUANTUM NOISES ON QGAN TRAINING
S.Y. CHANG1,2 , F. REHM1,3, S. KÜHN4, S. VALLECORSA1, K. JANSEN5, L. FUNCKE6, T. HARTUNG4,7, M. GROSSI1, K. BORRAS3,5, D. KRUECKER5

1CERN, Openlab, 2EPFL, 3 RWTH Aachen University 4 The Cyprus Institute, 5 Deutsches Elektronen-Synchrotron DESY, 6MIT, 7University of Bath

INTRODUCTION
■ Artificial noises are often injected in machine

learning for a more robust, more stable and faster
converging model.

■ Current and near future quantum devices still have
considerable levels of noise.

■ Possibility to replace the artificial noise in classical
ML with the intrinsic noise in quantum ML (QML).

OBJECTIVES
■ Investigate the impact of different errors in the

training of quantum Generative Adversarial Net-
works (qGAN) [1] for a simplified High-Energy
Physics (HEP) use case.

■ Provide a broad exploratory study to unfold the
hidden impact of noise in QML.
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REDUCTION IN PROBLEM SIZE
■ We reduce the original calorimeter output size gen-

erated by Monte Carlo based Geant4 simulations
■ Use the longitudinal profile to estimate incoming

particle → sum energy distribution along longitu-
dinal direction

■ Average over 10, 000 samples & bin into 2n pix-
els for n qubit quantum generator → probability of
getting state |k⟩ = normalized energy at pixel k.

■ Input dataset = scalars following the real energy
distribution
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Figure 2: (a) Original calorimeter output generated by
Geant4. (b) Reduced energy distribution used for our qGAN
training.

QUANTUM GAN
■ Hybrid model with a n-qubit quantum generator

and a classical discriminator [1]

Figure 3: Schematic Diagram of qGAN.

■ Relative entropy (or Kullback-Leibler (KL) divergence)
DKL(p∥q) =

∑
j p(j) log

p(j)
q(j) as accuracy metrics.

HYPERPARAMETER SCAN
■ We perform a scan on different subsets of hyperpa-

rameters: decay rate γ, generator lrg , and discrimi-
nator learning rate lrd.

■ Test the qGAN training using a noise model with
readout error in form of bit flips occurring indepen-
dently for each qubit with a flip probability p.

(a) Progress in relative entropy

(b) Hyperparamter importance

Figure 5: Results of the scan on different hyperparameters
for the readout error p = 0.01 and 0.1

■ Higher relative entropy for higher noise level, even
with the optimal hyperparameters.

■ Impact of generator learning rate becomes higher
as the flip probability increases.

INSTABILITY OF QGAN TRAINING
■ Repeat the qGAN training with the qiskit noise

model with readout error only using the same hy-
perparameters and investigate its statistical error.

(a) p = 0.01

(b) p = 0.1

Figure 4: Progress in relative entropy averaged over nrep =
20 and 100 runs for p = 0.01 and 0.1.

Flip probability p nrep = 20 nrep = 100
0.01 0.026± 0.028 0.028± 0.040
0.05 0.029± 0.022 0.027± 0.020
0.1 0.153± 0.097 0.159± 0.077

Table 1: Relative entropy at the end of the training

■ The model is stable on the “ensemble” of simula-
tions, but unstable for the individual runs.
→ Fixed standard deviation despite increase in the
number of simulations.

DISCUSSION
■ The instability of the qGAN model cannot be re-

solved even with large number of simulations.
→ Further study going on to find the origin of the
instability.

■ Small levels of quantum noise help to improve the
performance of the model, while error mitigation is
required for large noise.

■ Effect of error mitigation in the full noise model
and the real quantum hardware needs to be further
studied.

ONGOING RESEARCH
■ Train the qGAN on real quantum hardware.
■ Apply other error mitigation methods and compare

the resulting outcomes.

ERROR MITIGATION
■ We compare the training results with and without

error mitigation method implemented by qiskit.

Figure 6: Mean (above) and standard deviation (below)
of the final relative entropy, averaged over 20 simulations,
with and without error mitigation w.r.t. the readout error.

■ Low readout error (p < 0.06) helps the qGAN train-
ing, while error mitigation plays an important role
for high readout error.

■ Large standard deviation in the relative entropy
which cannot be overcome with error mitigation.

INCLUDING CNOT ERROR
■ We run the training with a custom noise model con-

sisting of 2.5% readout noise per qubit and 1.5%
two qubit gate level noise (called CNOT error).

■ We found new optimized hyperparameters to re-
duce the number of epochs to only 300 while reach-
ing a good accuracy.

Figure 7: Progression in relative entropy using a custom
noise model with and without error mitigation.

■ For the chosen noise levels one cannot see any im-
provement when including error mitigation.


