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MOTIVATION

Why Quantum Generative Adversarial Networks (GAN)?

Detectors simulation :
* Tremendous amount of time required by Monte Carlo based simulation
— Generative Adversarial Networks

Real Data

Quantum Machine Learning :
= Compressed data representation in quantum states Random

= Expect faster training with less number of parameters — rﬂ = N
— Potential advantage of Quantum GAN D’ a D o
= [nitial work using qGAN model constructed by IBM o FeTweTwmng

— limited in reproducing a probability distribution over discrete variables

‘ Explore different prototypes of quantum GAN to improve the model
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Application of GAN in HEP

3DGAN

= HEP detectors described as 3D cameras, recording pictures of particle collisions
= (Calorimeter — measure the energies deposited by the particle

— 3D image with monochromatic pixel intensities

= Higher Luminosity LHC — higher statistics & smaller simulation errors

= Speed up simulations — GAN (e.g. CaloGAN, 3DGAN)
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Quantum GAN

Practical gGAN model constructed by IBM
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Limitation
IBM qGAN model

= Limited in reproducing an average probability distribution over pixels

= Aim to reproduce a distribution over continuous variables

‘ Need to find alternative way to reproduce a “set” of images

] X
%.,& Dual-POC GAN model

= Take advantage of possibility of exponential compression by amplitude encoding
= View samples from a GAN as two distributions
' 1) Distribution over images

2) Distribution over pixels of individual images
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Dual-PQC GAN model

Role of single generator shared by two parameterized quantum circuits (pgc)

= PQC1 - Reproduce the distribution over 2™t images of size 2" } . O(log(N)) qubits (Dual PQC) i
= PQC2 - Reproduce amplitudes over 2" pixels on one image Vs O(N) neurons (Classical) |
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Appllcatlon of Dual-PQC GAN in HEP
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Convergence in individual images

Classification via

-..l- n=2,n,=4,n,=4, depthQll =2, depth92 =6

K-means clustering | Image0 and Image2
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Relative entropy of individual images
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Conclusion
Dual-PQC GAN

= Dual-PQC GAN model to reproduce a set of images
= Able to reproduce images with reduced size (4 pixels)
= Limited in generating only a fixed number of images

Future plans

- Run Dual-PQC GAN model on real quantum hardware
(Need of Error Mitigation?)

- Increase problem size

- Extend to Image generation for Earth Observation
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Simulation with readout noise from ibmq_belem

Progress in the loss function Relative Entropy
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QUESTIONS"
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Appendix A : gqGAN in HEP (details)

= -Preparatlon of Initial State

=03
0=
1. Uniform : Equiprobable Superposition of |0),..., [N — 1)

2. Normal : Normally distributed with empirical mean and std of training set
3. Random : Randomly distributed over |0),..., [N — 1)

=02
*;..;*Classical Discriminator
v' PyTorch Discriminator

v' 512 nodes + Leaky ReLU — 256 nodes + Leaky RelLU — single-node + sigmoid
v AMSGRAD optimizer for both generator and discriminator
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Appendix B : qGAN

in HEP (Results)
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Appendix C: Whyn,>n?

1
it
M(j) = : , ¢ij € [0,2n[ where I;; = Amplitude at pixel i for image j — Normalized
1 .
|12”—1j |Eel¢zn—1j

%, Casen,=n
= Quantum Circuit consists of reversible gates — Unitary matrix

= Inputs = computational basis — M(j) = j*! column at Mp,
— Cannot train PQC2 with n qubits if M(j) do not form an orthonormal basis

=%,
iy Case n, =2n

= First 2" columns of PQC2 is constructed as : Mpgc, (i) = |i) @ [M(i)) where [i) € {|0), ..., |2 — 1)},

— (Mpoc,(D|Mpoc, (D) = (IiXMDIM()) = {01 othigrl;/vjsi

— 221 — 2" columns can be chosen freely to construct a unitary matrix
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