Dual-PQC GAN Model in High Energy Physics

25th International Conference on Computing in High-Energy and Nuclear Physics

Su Yeon Chang (EPFL, CERN)

Steven Herbert (CQC), Sofia Vallecorsa (CERN), Elias Combarro (U. Oviedo), Ross Duncan (CQC) 20/05/2021

1

MOTIVATION

Why Quantum Generative Adversarial Networks (GAN)?

Detectors simulation :

- Tremendous amount of time required by Monte Carlo based simulation
- → Generative Adversarial Networks

Quantum Machine Learning :

- Compressed data representation in quantum states
- Expect faster training with less number of parameters
- → Potential advantage of Quantum GAN
- Initial work using qGAN model constructed by IBM
- \rightarrow limited in reproducing a probability distribution over discrete variables

Explore different prototypes of quantum GAN to improve the model

Application of GAN in HEP

3DGAN

- HEP detectors described as 3D cameras, recording pictures of particle collisions
- Calorimeter measure the energies deposited by the particle
- \rightarrow 3D image with monochromatic pixel intensities
- Higher Luminosity LHC \rightarrow higher statistics & smaller simulation errors
- Speed up simulations → GAN (e.g. CaloGAN, 3DGAN)

 $\left| p_{g}^{i}(\phi) \left| i \right\rangle \right.$

 $G_{\phi}|\psi_i\rangle = |g(\phi)\rangle = \sum_{i=1}^{n}$

Quantum GAN

Practical qGAN model constructed by IBM

IBM qGAN model

- Limited in reproducing an average probability distribution over pixels
- Aim to reproduce a distribution over continuous variables

Need to find alternative way to reproduce a "set" of images

Dual-PQC GAN model

- Take advantage of possibility of exponential compression by amplitude encoding
- View samples from a GAN as two distributions
- 1) Distribution over images
- 2) Distribution over pixels of individual images

CERN EPFL CON

Dual-PQC GAN Model in High Energy Physics

Dual-PQC GAN model

Role of single generator shared by two parameterized quantum circuits (pqc)

- **PQC1** Reproduce the distribution over 2^{n_1} images of size 2^n
- PQC2 Reproduce amplitudes over 2ⁿ pixels on one image

$$G_{1,\phi_1}|\psi_i\rangle = |g_{1,\phi_1}\rangle = \sum_{j=0}^{2^{n_1}-1} \sqrt{p_g^j} |j\rangle, \qquad \qquad G_{2,\phi_2}|\psi_i\rangle = |g_{2\phi_2}\rangle = \sum_{j=0}^{2^{n_1}-1} \sqrt{I_{ij}} |\Psi_j\rangle|j\rangle$$

 $\longrightarrow 2^{n_1}$ images of size 2^n

O(log(N)) qubits (Dual PQC)

v.s O(N) neurons (Classical)

Convergence in individual images ?

Relative entropy of individual images

 $n = 2, n_1 = 4, n_2 = 4, depth_{q1} = 2, depth_{q2} = 16$

To be corrected Can generate all four possible sets of images

> **One-to-one** correspondence Image0 \rightarrow Set0 Image1 \rightarrow Set3 $Image2 \rightarrow Set1$ Image3 \rightarrow Set2

Conclusion

Dual-PQC GAN

- Dual-PQC GAN model to reproduce a set of images
- Able to reproduce images with reduced size (4 pixels)
- Limited in generating only a fixed number of images

Future plans

- Run Dual-PQC GAN model on real quantum hardware (Need of Error Mitigation?)
- Increase problem size
- Extend to Image generation for Earth Observation

Simulation with readout noise from ibmq_belem

Dual-PQC GAN Model in High Energy Physics

QUESTIONS?

su.yeon.chang@cern.ch

Dual-PQC GAN Model in High Energy Physics

Appendix A : qGAN in HEP (details)

Preparation of Initial State

- **1. Uniform** : Equiprobable Superposition of $|0\rangle, ..., |N-1\rangle$
- 2. Normal : Normally distributed with empirical mean and std of training set
- **3.** Random : Randomly distributed over $|0\rangle, ..., |N-1\rangle$

Classical Discriminator

- ✓ PyTorch Discriminator
- ✓ 512 nodes + Leaky ReLU → 256 nodes + Leaky ReLU → single-node + sigmoid
- ✓ AMSGRAD optimizer for both generator and discriminator

Appendix B : qGAN in HEP (Results)

Quantum Generative Adversarial Networks

Appendix C : Why n_2 > n?

 $M(j) = \begin{pmatrix} |I_{0j}|^{\frac{1}{2}} e^{i\phi_{0j}} \\ \vdots \\ |I_{2^{n}-1j}|^{\frac{1}{2}} e^{i\phi_{2^{n}-1j}} \end{pmatrix}, \quad \phi_{ij} \in [0, 2\pi[\text{ where } I_{ij} = \text{Amplitude at pixel i for image } j \to \text{Normalized}$

 $\vec{r}_{1:1}$ Case $n_2 = n$

- Quantum Circuit consists of reversible gates \rightarrow **Unitary matrix**
- Inputs = computational basis $\rightarrow M(j) = j^{\text{th}}$ column at M_{PQC_2}
- \rightarrow Cannot train PQC2 with n qubits if M(j) do not form an orthonormal basis

 $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ Case $n_2 = 2n$

• First 2ⁿ columns of PQC2 is constructed as : $M_{PQC_2}(i) = |i\rangle \otimes |M(i)\rangle$ where $|i\rangle \in \{|0\rangle, ..., |2^n - 1\rangle\}$,

 $\rightarrow \langle M_{PQC_2}(i) | M_{PQC_2}(j) \rangle = \langle i | j \rangle \langle M(i) | M(j) \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

 $\rightarrow 2^{2n}-2^n$ columns can be chosen freely to construct a unitary matrix