RUNNING THE DUAL-POC GAN ON NOISY SIMULATORS AND

REAL QUANTUM HARDWARE L

CAMBRIDGE QUANTUM COMPUTING

EPFLZ 5 Soeniab

S.Y. CHANG"#, S. HERBERT**, S. VALLECORSA', E. F. COMBARRO®, M. GROSSI', E. AGNEW?, R. DUNCAN®*%"
'CERN, Openlab, *EPFL, *Cambridge Quantum Computing, “*University of Cambridge, °*University of Oviedo, ®University of Strathclyde, “University College London

INTRODUCTION DUAL-POC GAN HYPERPARAMETER SCAN

B In an earlier work [1], we introduced dual- Training set of images with 2™ pixels B We perform hyperparameter scan in order to evalu- 0.3 Mean (p — 0.02)
Parameterized Quantum Circuit (PQC) GAN, Two quantum generators (PQCs in qiskit) & One ate the impact of different hyperparameters depend- 2 hd Mean (p = 0.04)
which is an advanced prototype of quantum GAN classical discriminator (in PyTorch) ing on the noise level — decay rate and learning rate E 0.2 '\u ."'ﬂ""ih'-"i“"s"\,ﬂ.,\‘ :"g.\ j ﬁiz gZ g i 88421;

B Dual-PQC GAN was tested to imitate calorimeter PQC1 : Reproduce a probability distribution p(;) for PQC1, PQC2 and discriminator ’*;50.1 o x/\/’?i/“":‘-'?.,'
outputs in .I—Iigh—.Energy PhYSiC§ (HEP) in the ab- for j = 0,...,2" — 1 images B We use giskit noise model with a two-qubit gate er- o
sence of noise, with statevector simulator — Pass the measured computational basis state to Iror, p 0.01 | | | | |

- However, n.oise due to the interaction with the en- PQC2 as an input B We consistently get hyperparameters which lead the " " D s
vironment 15 .the major obstacle for the near-term PQC2 : Measure n qubits among ns qubits & re- training to convergence for both p = 0.02 and p = Figure 3: The relative entropy obtained from the hyperpa-
quantum devices turn a normalized image Z; for each input sate |;) 0.04, but with higher D, for the latter. rameter scan with p = 0.02 and 0.04.

by constructing the probability distribution over 2"
OBJECTIVES states, |¢) € {[0),...,[2" — 1)}

— each state corresponds to one pixel in an image

INFERENCE TRAINING ON A REAL HARDWARE

Both PQC with alternating layers of R, rotations | | M Using the parameters pretrained on the noisy sim- | | M Train the dual-PQC GAN model on the real quan-
gates and C'Z entanglement gates ulator, we test the inference of the model on the tum hardware, ibmq_lagos.

superconducting (IBMQ) and trapped-ion (IONQ)
auantum hardware

B Investigate the impact of hyperparameters in dual-
PQC GAN training using noisy simulators

B Test the inference of the model using trained pa-
rameters on superconducting and trapped-ion quan-
tum device To solve unitarity constraint, require ny = 2n

Ultimately, can generate 2"' images of size 2"
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For the following simulations, we use n = n; = 2, o4~ Target -
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B To compare with generated images : Classify the
real images into 4 sets via K-mean clustering & av-

erage over each class — 4 images ij ,7=20,1,2,3
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Figure 2: Schematic Diagram of dual-PQC GAN to repro-
duce images of 2" pixels.
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Figure 5: Results of dual-PQC GAN training on the real

. S S SN B " e dotn 3 quantum hardware, ibmgq_lagos.
Zos B We evaluate perf f the model using t © @
% di?feer‘;itu ;stﬁs; .Ormance OF THE HHOEEL USiig tWO Flgure 4: Mean (a,c) and individual images (b,d) obtained DISCUSSION
=03 ' by inference test on ibmgq_jakarta (a,b) and IONQ (c,d). , ,
S . 8 B For the inference test, we get stable results using
%0-2 1. Relative entropy, D KL (Imeanj\fmean), between Device Readout error | Dir/Dkr.ind IBMQ machines with low influence of noises, while
C . the Average of the real Images, Imean and the gen- CX error (x107%) more inspection would be required for IONQ.
8 erated images Zmean, With ibmq_jakarta 0.028 . 0.14 = 0.14 B We were able to reach convergence in mean image
0% - 1i o dz‘ . 3 p(4) B 1.367 - 10 6.49 =+ 0.54 on the real quantum hardware, but further simula-
AIOTHRELEL GeD D )1 1 . 0.01 0.26 & 0.11 ' U i itV i in-
Figure 1: Mean image of 20,000 normalized real image sam- xLplla) = Zp og q(7) (1) ibm_lagos 9.10-3 24+ 0.71 tlfm.s are Fec__ulred to get more diversity in the in
] ] ified i 5.082 - 10 6.92 = 0. dividual 1mages.
ples, classified into 4 classes. 0.026 103 L 1.0%
2. Individual relative entropy : the mean of the mini- ibmq_casablanca | .o 2 6.58 & 0.81
REFERENCES mljtlﬁl relatniet erglropy f(?r each of generated images ONG NULL 1941074 ONGOING RESEARCH
WIHLTESpECE 1O ThE Teal IAges 1.59 - 1077 10.1 £ 5.6 B Improve the performance of dual-PQC GAN train-
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o1 1 ing on the real IBMQ machine
Table 1: Dxr and Dkr ina (averaged over 20 runs) ob-
tained from the inference test on ditferent quantum hard-

ware and their error rates.

B Increase the problem size — number and size of im-
ages increasing exponentially with n; and ns




