RUNNING THE DUAL-PQC GAN ON NOISY SIMULATORS AND REAL QUANTUM HARDWARE

S.Y. CHANG^{1,2}, S. HERBERT^{3,4}, S. VALLECORSA¹, E. F. COMBARRO⁵, M. GROSSI¹, E. AGNEW³, R. DUNCAN^{3,6,7} ¹CERN, Openlab, ²EPFL, ³Cambridge Quantum Computing, ⁴University of Cambridge, ⁵University of Oviedo, ⁶University of Strathclyde, ⁷University College London

INTRODUCTION

- In an earlier work [1], we introduced dual-Parameterized Quantum Circuit (PQC) GAN, which is an advanced prototype of quantum GAN
- Dual-PQC GAN was tested to imitate calorimeter outputs in High-Energy Physics (HEP) in the absence of noise, with statevector simulator
- However, noise due to the interaction with the environment is the major obstacle for the near-term quantum devices

OBJECTIVES

- Investigate the impact of hyperparameters in dual-PQC GAN training using noisy simulators
- Test the inference of the model using trained parameters on *superconducting* and *trapped-ion* quantum device

REDUCTION IN PROBLEM SIZE

- We reduce the original calorimeter output size (25x25x25 pixels) generated by Monte Carlo based *Geant4* simulation
- Longitudinal profile used to estimate incoming particle \rightarrow Sum energy distribution along longitudinal direction
- To compare with generated images : Classify the **real images** into 4 sets via K-mean clustering & average over each class $\rightarrow 4$ images $\mathcal{I}_i, j = 0, 1, 2, 3$

Calorimeter depth

Figure 1: Mean image of 20,000 normalized real image samples, classified into 4 classes.

REFERENCES

[1] Su Yeon Chang, Steven Herbert, Sofia Vallecorsa, Elías F. Combarro, and Ross Duncan. Dual-parameterized quantum circuit gan model in high energy physics. *EPJ Web of Conferences (CHEP 2021)*, 251:03050, 2021.

DUAL-PQC GAN

Training set of images with 2^n pixels Two quantum generators (PQCs in qiskit) & One classical discriminator (in PyTorch) **PQC1** : Reproduce a probability distribution p(j)for $j = 0, ..., 2^{n_1} - 1$ images \rightarrow Pass the measured computational basis state to PQC2 as an input **PQC2** : Measure n qubits among n_2 qubits & return a normalized image \mathcal{I}_j for each input sate $|j\rangle$ by constructing the probability distribution over 2^n states, $|i\rangle \in \{|0\rangle, ..., |2^{n} - 1\rangle\}$ \rightarrow each state corresponds to one pixel in an image Both PQC with alternating layers of R_y rotations gates and CZ entanglement gates Ultimately, can generate 2^{n_1} images of size 2^n To solve unitarity constraint, require $n_2 = 2n$ For the following simulations, we use $n = n_1 = 2$, $n_2 = 4, d_1 = 2, d_2 = 5$ Real Data \rightarrow Discard PQC2

Figure 2: Schematic Diagram of dual-PQC GAN to reproduce images of 2^n pixels.

METRIC

- We evaluate performance of the model using two different metrics :
- **Relative entropy**, $D_{KL}(\mathcal{I}_{mean} \| \tilde{\mathcal{I}}_{mean})$, between the average of the real images, \mathcal{I}_{mean} and the generated images \mathcal{I}_{mean} , with

$$D_{KL}(p||q) = \sum_{j} p(j) \log \frac{p(j)}{q(j)}$$
(1)

Individual relative entropy : the mean of the minimum relative entropy for each of generated images with respect to the real images

$$D_{KL,ind} = \frac{1}{2^{n_1}} \sum_{i=0}^{2^{n_1}-1} \min_{j} D_{KL}(\tilde{\mathcal{I}}_j \| \mathcal{I}_i) \qquad (2$$

INFERENCE

ibmo

HYPERPARAMETER SCAN

We perform **hyperparameter scan** in order to evaluate the impact of different hyperparameters depending on the noise level \rightarrow decay rate and learning rate for PQC1, PQC2 and discriminator

We use *qiskit* noise model with a two-qubit gate er-

We consistently get hyperparameters which lead the training to convergence for both p = 0.02 and p = -10000.04, but with higher D_{KL} for the latter.

Figure 3: The relative entropy obtained from the hyperparameter scan with p = 0.02 and 0.04.

Using the parameters pretrained on the noisy simulator, we test the **inference** of the model on the superconducting (IBMQ) and trapped-ion (IONQ) quantum hardware

Figure 4: Mean (a,c) and individual images (b,d) obtained by inference test on ibmq_jakarta (a,b) and IONQ (c,d).

Readout error Drzz / Drzz -	7
Dovice Incurrent CITOL $D_{KL}/D_{KL}, ii$	ιd
$CX \text{ error} \qquad (\times 10^{-2})$	
0.028 0.14 ± 0.14	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.01 0.26 ± 0.11	
$5.582 \cdot 10^{-3}$ 6.92 ± 0.71	
0.026 4.03 ± 1.08	
$4.58 \cdot 10^{-2} \qquad 6.58 \pm 0.81$	
IONO NULL 1.24 ± 0.74	
$101NQ 1.59 \cdot 10^{-2} 10.1 \pm 5.6$	

Table 1: D_{KL} and $D_{KL,ind}$ (averaged over 20 runs) obtained from the inference test on different quantum hardware and their error rates.

ages increasing exponentially with n_1 and n_2