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INTRODUCTION
■ In an earlier work [1], we introduced dual-

Parameterized Quantum Circuit (PQC) GAN,
which is an advanced prototype of quantum GAN

■ Dual-PQC GAN was tested to imitate calorimeter
outputs in High-Energy Physics (HEP) in the ab-
sence of noise, with statevector simulator

■ However, noise due to the interaction with the en-
vironment is the major obstacle for the near-term
quantum devices

OBJECTIVES
■ Investigate the impact of hyperparameters in dual-

PQC GAN training using noisy simulators
■ Test the inference of the model using trained pa-

rameters on superconducting and trapped-ion quan-
tum device

REFERENCES

[1] Su Yeon Chang, Steven Herbert, Sofia Vallecorsa, Elías F.
Combarro, and Ross Duncan. Dual-parameterized
quantum circuit gan model in high energy physics. EPJ
Web of Conferences (CHEP 2021), 251:03050, 2021.

REDUCTION IN PROBLEM SIZE
■ We reduce the original calorimeter output size

(25x25x25 pixels) generated by Monte Carlo based
Geant4 simulation

■ Longitudinal profile used to estimate incoming
particle → Sum energy distribution along longitu-
dinal direction

■ To compare with generated images : Classify the
real images into 4 sets via K-mean clustering & av-
erage over each class → 4 images Ĩj , j = 0, 1, 2, 3

Figure 1: Mean image of 20,000 normalized real image sam-
ples, classified into 4 classes.

DUAL-PQC GAN
■ Training set of images with 2n pixels

■ Two quantum generators (PQCs in qiskit) & One
classical discriminator (in PyTorch)

■ PQC1 : Reproduce a probability distribution p(j)
for j = 0, ..., 2n1 − 1 images
→ Pass the measured computational basis state to
PQC2 as an input

■ PQC2 : Measure n qubits among n2 qubits & re-
turn a normalized image Ij for each input sate |j⟩
by constructing the probability distribution over 2n

states, |i⟩ ∈ {|0⟩ , ..., |2n − 1⟩}
→ each state corresponds to one pixel in an image

■ Both PQC with alternating layers of Ry rotations
gates and CZ entanglement gates

■ Ultimately, can generate 2n1 images of size 2n

■ To solve unitarity constraint, require n2 = 2n

■ For the following simulations, we use n = n1 = 2,
n2 = 4, d1 = 2, d2 = 5
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Figure 2: Schematic Diagram of dual-PQC GAN to repro-
duce images of 2n pixels.

METRIC
■ We evaluate performance of the model using two

different metrics :

1. Relative entropy, DKL(Imean∥Ĩmean), between
the average of the real images, Ĩmean and the gen-
erated images Imean, with

DKL(p∥q) =
∑
j

p(j) log
p(j)

q(j)
(1)

2. Individual relative entropy : the mean of the mini-
mum relative entropy for each of generated images
with respect to the real images

DKL,ind =
1

2n1

2n1−1∑
i=0

min
j

DKL(Ĩj∥Ii) (2)

HYPERPARAMETER SCAN

■ We perform hyperparameter scan in order to evalu-
ate the impact of different hyperparameters depend-
ing on the noise level → decay rate and learning rate
for PQC1, PQC2 and discriminator

■ We use qiskit noise model with a two-qubit gate er-
ror, p

■ We consistently get hyperparameters which lead the
training to convergence for both p = 0.02 and p =
0.04, but with higher DKL for the latter.

Figure 3: The relative entropy obtained from the hyperpa-
rameter scan with p = 0.02 and 0.04.

ONGOING RESEARCH
■ Improve the performance of dual-PQC GAN train-

ing on the real IBMQ machine
■ Increase the problem size → number and size of im-

ages increasing exponentially with n1 and n2

INFERENCE
■ Using the parameters pretrained on the noisy sim-

ulator, we test the inference of the model on the
superconducting (IBMQ) and trapped-ion (IONQ)
quantum hardware

(a) (b)

(c) (d)

Figure 4: Mean (a,c) and individual images (b,d) obtained
by inference test on ibmq_jakarta (a,b) and IONQ (c,d).

Device Readout error
CX error

DKL/DKL,ind

(×10−2)

ibmq_jakarta 0.028
1.367 · 10−2

0.14± 0.14
6.49± 0.54

ibm_lagos 0.01
5.582 · 10−3

0.26± 0.11
6.92± 0.71

ibmq_casablanca 0.026
4.58 · 10−2

4.03± 1.08
6.58± 0.81

IONQ NULL
1.59 · 10−2

1.24± 0.74
10.1± 5.6

Table 1: DKL and DKL,ind (averaged over 20 runs) ob-
tained from the inference test on different quantum hard-
ware and their error rates.

TRAINING ON A REAL HARDWARE
■ Train the dual-PQC GAN model on the real quan-

tum hardware, ibmq_lagos.

(a) Progress in relative entropy

(b) Mean image (c) Individual images

Figure 5: Results of dual-PQC GAN training on the real
quantum hardware, ibmq_lagos.

DISCUSSION
■ For the inference test, we get stable results using

IBMQ machines with low influence of noises, while
more inspection would be required for IONQ.

■ We were able to reach convergence in mean image
on the real quantum hardware, but further simula-
tions are required to get more diversity in the in-
dividual images.


