
GPU Acceleration of 3D Agent-Based
Biological Simulations

Ahmad Hesam
ABS group

Delft University of Technology
Delft, Netherlands

a.s.hesam@tudelft.nl

Lukas Breitwieser
CERN openlab

CERN
Geneva, Switzerland

lukas.breitwieser@cern.ch

Fons Rademakers
CERN openlab

CERN
Geneva, Switzerland

fons.rademakers@cern.ch

Zaid Al-Ars
ABS group

Delft University of Technology
Delft, Netherlands
z.al-ars@tudelft.nl

Abstract—Researchers in biology are faced with the tough
challenge of developing high-performance computer simulations
of their increasingly complex agent-based models. BioDynaMo
is an open-source agent-based simulation platform that aims
to alleviate researchers from the intricacies that go into the
development of high-performance computing. Through a high-
level interface, researchers can implement their models on top of
BioDynaMo’s multi-threaded core execution engine to rapidly
develop simulations that effectively utilize parallel computing
hardware. In biological agent-based modeling, the type of op-
erations that are typically the most compute-intensive are those
that involve agents interacting with their local neighborhood.
In this work, we investigate the currently implemented method
of handling neighborhood interactions of cellular agents in
BioDynaMo, and ways to improve the performance to enable
large-scale and complex simulations. We propose to replace the
kd-tree implementation to find and iterate over the neighborhood
of each agent with a uniform grid method that allows us
to take advantage of the massively parallel architecture of
graphics processing units (GPUs). We implement the uniform
grid method in both CUDA and OpenCL to address GPUs
from all major vendors and evaluate several techniques to
further improve the performance. Furthermore, we analyze the
performance of our implementations for models with a varying
density of neighboring agents. As a result, the performance of the
mechanical interactions method improved by up to two orders of
magnitude in comparison to the multithreaded baseline version.
The implementations are open-source and publicly available on
Github.

Index Terms—agent-based modeling, simulation, GPU, co-
processing, biological models, acceleration

I. INTRODUCTION

Agent-based simulation (ABS) is a powerful tool for con-
ducting research on complex biological systems. In ABS, a
biological system is composed of a number of agents that
individually are modeled to follow a fixed set of, often simple,
rules. Agents can interact with neighboring agents or respond
to external stimuli. Although the individual behavior of agents
is often trivial, the emerging behavior that comes forth from
the biological system as a whole can give researchers valuable
insights [1]–[3].

As the complexity and scale of biological agent-based
models increases so does the demand for computational power
and efficiency [2]. Agent-based simulations are inherently
parallelizable in their execution, as the agents’ states can be
modified independently of each other. Modern-day hardware is

becoming increasingly more parallelized as a result of Dennard
scaling [4] and the stagnation of Moore’s law [5], as pointed
out in [6]. Moreover, general-purpose computing on graphics
processing units (GPUs) is an attractive solution to improve the
computational efficiency of ABS applications in particular [7],
[8], and parallel applications in general [9], [10]. By porting
applications to, either fully or partially, run on GPUs it is
possible to observe speedups of several orders of magnitude in
comparison to the CPU-only execution [11]. Although several
ABS frameworks exist that achieve significant speedups using
GPUs in the field of ABS, there is still significant room for
improvement, which we wish to address in this article.

BioDynaMo [6] is an open-source software platform for life
scientists for simulating biological agent-based models. Each
agent in BioDynamo is programmed to follow a specified set
of rules, imposed by the modeler, that can trigger specified
actions affecting itself or other agents. Agents in biological
systems often interact with their local environment, and their
behavior can be influenced by other agents that reside within
a certain range. An example is the mechanical interactions
a cellular agent undergoes when it physically collides with
another agent. Local interactions are an extremely important
concept in biological systems since it is the driving force
behind key biological processes, such as tissue development
[12].

BioDynaMo is fully parallelized using OpenMP and its
performance scales with the number of CPU cores available
on a system [6]. To further enhance the simulations’ perfor-
mance, we want to investigate the applicability of GPUs in
accelerating compute-intensive operations in BioDynaMo. In
this work we present the following contributions:

– Redesign the neighborhood search in BioDynaMo from
a kd-tree method to a uniform grid method to profit from
the parallel architecture of GPUs.

– Port the uniform grid implementation to GPU code using
OpenCL and CUDA to address all major GPU vendors.

– Improve the GPU kernels based on domain-specific as-
pects of biological agent-based models.

– Benchmark the runtime and analyze the performance
gains that are obtained.

The organization of the paper is as follows. Section II

ar
X

iv
:2

10
5.

00
03

9v
1 

 [
cs

.D
C

] 
 3

0 
A

pr
 2

02
1



p2

r2

Fig. 1: Sphere-sphere collision force diagram (projected as
circles for simplicity).

discusses related work. In Section III we define the problem
in more detail. In Section IV we describe the methodology of
our approach. Section V describes the hardware and software
setup. In Section VI we present the results. And finally, in
Section VII we draw the conclusions of this work.

II. RELATED WORK

There are several frameworks and software packages that
make it possible to simulate agent-based models for biological
systems. There are many more specialized software solutions,
but these generally focus on one biological process, or a
few closely related biological processes. Some of the more
general ABS frameworks for biological systems (BioCellion
[13], PhysiCell [14], Timothy [15], and Chaste [16]) focus,
among other things, on computational efficiency, but do not
support GPU acceleration. In this work, we demonstrate that
GPU acceleration is possible for general-purpose agent-based
platforms.

In the works of [7] and [8] the authors present cellular
agent-based simulation (ABS) programs that run entirely on
a GPU. The authors report speedups of several orders of
magnitude over ABS frameworks that are only targeted for
CPUs. Although the findings are impressive, the fact that
the simulation runs entirely on the GPU has two major
drawbacks. First, it puts a lot of pressure on minimizing
memory consumption. As GPU memory is a non-expandable
and limited resource, there is a limit to the complexity of the
agents’ state and the scale of the model. In this work, we
offload the most compute-intensive operation to GPU, which
requires only a subset of the agents’ state data to be present
on the GPU memory. Second, operations that are independent
of the agents, such as extracellular substance diffusion, are
integral to biological systems and are absent from these works.
With BioDynaMo we can simulate the extracellular substance
diffusion efficiently on a multi-core CPU, independently from
the GPU operations [6].

III. PROBLEM DEFINITION

The mechanical interaction operation is one of the most
compute-intensive operations in any cellular agent-based
model. Each cell (i.e. agent) interacts with all other cells within
a certain interaction radius. For cells that are physically in
contact with each other, we need to compute the collision
forces and the resulting displacement. In BioDynaMo cellular

Fig. 2: A visualization of the cell division module in BioDy-
naMo (cross-sectional view). The colors represent the diameter
of the cells.

agents can be physically modeled as spherical objects. For
the scope of this paper, we shall consider only sphere-sphere
interactions, as illustrated in Fig. 1 (projected as circles). Equa-
tion (1) [17] shows the calculations involved in determining
the mechanical force.

δ = r1 + r2 − ‖p1 − p2‖
r = r1·r2

r1+r2

F = (κ · δ − γ ·
√
r · δ) · p1−p2

‖p1−p2‖ ,

(1)

where r1 and r2 are the radii of the spheres, p1 and p2 their
position vectors, κ the repulsion coefficient, γ the attraction
coefficient, and F the resulting collision force vector. After the
collision force has been computed, we determine whether it is
strong enough to break the adherence of the cell in question.
If that is the case, then we integrate over the collision force
to compute the final displacement. The length of the final
displacement vector is generally limited by an upper bound.

To quantify the impact of improving this operation for
BioDynaMo, we run one of the available benchmarks that
use all default operations (cell division module). In this
benchmark, a 3D grid of 262,144 cells of the same volume are
spawned and proliferate for 10 iterations. Once the cells are
instantiated, in each iteration the same operations are executed:
1) cell proliferation, 2) neighborhood lookup, and 3) resolving
the mechanical forces. A visualization of cell proliferation in
BioDynaMo with fewer cells and a longer runtime is shown in
Fig. 2. We profile this benchmark to get a better understanding
of the computational bottlenecks in BioDynaMo.

From Fig. 3 we observe that the mechanical interactions
operation (highlighted in blue) is the most time-consuming
in the benchmark by a large margin. Since this operation
requires iterating over all agents, and in turn over all of
their neighboring agents, this observation matches our prior
expectation. 51% of the benchmark’s runtime is spent on
the mechanical force calculations as described in (1), and
36% is spent on updating the neighborhood list of each
agent. Updating the neighborhood is executed in two steps: 1)



Mech. Force Comp. (51%)
Neighborhood (36%)
Cell Division (2%)
Remainder (11%)

51% 36% 11%

Fig. 3: Runtime profile of the cell division benchmark in
BioDynaMo.

Fig. 4: Finding the neighborhood of an agent using the uniform
grid method. Displayed in 2D for simplicity.

building a kd-tree, and 2) searching all the agents’ neighbors
within a specified radius.

A kd-tree is one of the many methods that can be used
for a radial neighborhood search. Considering that we want
to offload this mechanical interactions operation to GPU, a
more appealing method could be a uniform grid method. The
uniform grid method allows us to apply different techniques
to improve the GPU version of the mechanical interactions
operation, which we will discuss in this paper.

IV. METHODOLOGY

In this section we will go over the implementation of
the various improvements that were made on the existing
mechanical interactions operation in BioDynaMo. We use
BioDynaMo v0.0.9-8b3d6c7 as the baseline version, which
allows us to benefit more from GPU acceleration than the latest
version presented in [6], as the data are stored in a structs-of-
arrays format, rather than arrays-of-structs.

A. Uniform Grid Method

The uniform grid method imposes a regularly-spaced 3D
grid within the simulation space. Each voxel of the grid
contains only the agents that are confined within its subspace.
Finding the neighboring agents of a particular agent can be
done by only taking into account the voxels surrounding that
particular agent, as illustrated in 2D in Fig. 4. The agent that
we want to find the neighborhood for is colored red, and its
interaction radius is highlighted in red. We only consider the
agents in the 9 surrounding voxels (27 in 3D) around which
a red line is drawn in the figure. We implement the uniform

Grid

+ boxes_ : vector<Box>

+ box_length_ : uint32_t 

+ grid_dimensions_ : array<uint32_t, 6> 

+ successors_: vector<SoHandle> 

+ ForEachNeighborWithinRadius(F func)

+ Initialize()

+ UpdateGrid()

+ ClearGrid()

Box

+ start_ : atomic<SoHandle> 

+ length_ : atomic<uint16_t>

+ AddObject(SoHandle)

SoHandle

+ type_idx_ : uint16_t

+ element_idx_ : uint32_t

+ GetTypeIdx() : uint16_t

+ GetElementIdx() : uint32_t

Fig. 5: UML diagram of the class created for the uniform grid
method.

grid approach in BioDynaMo as a C++ class as illustrated
in Fig. 5 as a UML diagram. For every simulation timestep,
we reconstruct the uniform grid to take into account the
addition, deletion, and movement of agents. Each voxel (i.e.
Box) keeps track of the number of agents it contains and the
last object that was added. Through the use of a linked list
(Grid::successors_) we can iterate through all objects
inside a single Box. The exact implementation details can be
found in our Github repository1.

B. GPU Implementation

We implement the uniform grid solution on the GPU using
both CUDA and OpenCL to target GPUs from all major
vendors. To minimize the amount of CPU and GPU context
switches, we decided to port the uniform grid algorithm as well
as the mechanical force computation as a single GPU kernel.
Each GPU thread handles the mechanical interaction of one
cell by 1) finding the cell’s neighborhood, and 2) computing
the mechanical forces between the cell and all the cells in its
neighborhood. The state data of all the agents in BioDynaMo
are stored as structs-of-arrays (e.g. the position data of all
agents are store contiguously in memory). This allows us to
copy the required state data for the mechanical interaction
operation from the host DRAM to the GPU DRAM without
first having to coalesce the data for all agents.

C. Improvement I: Reduction in Floating-Point Precision

BioDynaMo uses double-precision floating points (FP64)
data types for all its floating-point data. However, most con-
sumer GPUs perform stronger in single-precision floating-
point (FP32) operations. This is a manifestation of the fact that
GPU vendors primarily target the gaming industry and the field
of artificial intelligence. Game engines and machine learn-
ing frameworks rely mostly on single-precision floating-point
operations, so GPU manufacturers designed their consumer
GPUs with more FP32 logic units than their double-precision
counterparts. Some GPU vendors have dedicated cards for
high-performance scientific computing that offer more FP64
logic units. For agent-based simulations, other factors, such

1https://github.com/Senui/biodynamo/tree/paper-floats



Fig. 6: The path of a Z-order curve in 2D. Adapted from [18].

as choosing the correct runtime parameters for a model (e.g.
initial agent attribute values, number of simulation steps, etc.),
generally far outweigh the accuracy of the final results in
comparison to the imprecision that could come forth from
reducing the floating-point precision from double to single.
BioDynaMo has an extensive set of unit tests and integration
tests that we can use to verify whether or not the reduction to
FP32 affects the results. Moreover, FP32 data types are half
the size of FP64 data types in memory, which reduces the size
of the buffers that need to be copied back and forth from the
host to the device, leading to a potentially significant increase
in throughput, and thus performance.

D. Improvement II: Space-filling Curve Sorting

CUDA and OpenCL organize threads in groups of threads;
called blocks and workgroups, respectively. The execution of
the threads on the actual hardware is done in warps (generally
in groups of 32 threads), with each warp executing the same
instruction, but on different data (i.e. SIMT execution model).
BioDynaMo lays down the agents’ data in memory in the order
that the C++ objects were instantiated. Each thread requires the
data of the neighborhood of the simulation object it processes,
which is not contiguous in memory, but rather scattered. Con-
sequently, each thread performs numerous scattered memory
accesses, which will in most cases end up fetching the data
from DRAM, which can degrade the performance significantly.
This could have been prevented if the data of agents that are
close to each other in space are also laid down close to each
other in memory. This is where space-filling curves come in;
more specifically the Z-order curve [19]. A space-filling curve
describes a path in multidimensional space that passes through
the data points in consecutively local order, as illustrated in
Fig. 6. A function that implements a space-filling curve can
map multidimensional data (such as 3D Cartesian coordinates)
to a one-dimensional array, where consecutive elements of
that array are spatially local to each other. For a Z-order
curve, the Z-value of each data point can be computed by
binary interleaving its coordinate values and represents the
index of the resulting one-dimensional array. With regards
to BioDynaMo, this would imply calculating the Z-values of
all the agents and sorting their state data accordingly. We
anticipate that the cache line for accessing an agent will

(a) Data required by
thread X.

(b) Data required by
thread Y.

(c) Data required by
thread Z.

Fig. 7: Exploiting the reuse of neighboring simulation object
data for the usage of shared memory resources on GPU.

also contain the data of the agents in its neighborhood, and
therefore reduces the number of fetches to DRAM. A reduced
number of fetches to DRAM should lead to a less data-starved
execution pipeline, and therefore a higher throughput, and thus
a reduction in the execution time for each simulation step.

E. Improvement III: Using Shared Memory

Most GPUs feature different types of on-chip memory,
such as texture memory or shared memory. In certain cases,
storing data on on-chip memory drastically reduces the latency
for fetching data during a GPU kernel execution, and could
therefore improve the overall performance. In BioDynaMo,
the concept of letting each GPU thread handle the mechanical
interactions of one agent leaves little room for the shared
memory resources of GPUs to be used. The reason is that
there is no reuse of data for threads within the same CUDA
block (or OpenCL workgroup). The kernel parallelizes the for
loop over all agents, so each thread works on data that are
independent of the threads in the same block. To make use of
shared memory, we need to create a kernel that allows multiple
threads to work on mostly the same data. It is here where
we can reap the benefits of the uniform grid method that we
implemented as an alternative to the kd-tree method. We can
exploit the fact that cells in the same voxel of the UG grid
share the same neighboring voxels, and thus share the same
simulation object candidates for their neighborhood. Instead of
parallelizing the for loop over all cells, we consider a kernel
that would parallelize a loop over all voxels. The threads that
process the agents of a single voxel will need to reuse the
neighborhood data, which can be stored in shared memory
for low-latency memory fetches. The concept is illustrated in
Fig. 7. All the state data belonging to the agents that are within
the highlighted region in Fig. 7 are stored in shared memory.
The shared memory objects are built in parallel by appending
state data from agents of multiple voxels within the highlighted
region. To avoid race conditions, the use of atomic operations
is required in building the shared memory objects in parallel.

V. EXPERIMENTAL SETUP

The hardware on which the evaluations are done belong
to the CERN IT department and are tabulated in Table I.
The CPUs of both systems consist of two physical sockets
organized in a non-uniform memory access (NUMA) design.



TABLE I: Specifications of the systems used for benchmarking

GPU chip GPU RAM Memory
bandwidth

Single-precision
performance

Double-precision
performance CPU chip CPU cores CPU DRAM

System A Nvidia GTX1080 Ti 11GB 484 GB/s 11.34 TFLOPS 0.354 TFLOPS Intel Xeon
E5-2640 v4

20 (2 sockets,
40 threads) 256GB

System B Nvidia Tesla V100 32GB 900 GB/s 15.7 TFLOPS 7.8 TFLOPS Intel Xeon
Gold 6130

32 (2 sockets,
64 threads) 187GB

102 103 104 105

GPU Version III
GPU Version II
GPU Version I
GPU Version 0

UG-method (20 threads)
UG-method (serial)

Baseline (20 threads)
Baseline (serial)

274
199

527
1039

1910
14497

8226
25817

Runtime (ms)

Fig. 8: The runtime for various implementations of the me-
chanical interaction operation running benchmark A. The GPU
results are obtained from the CUDA runtime on system A.

To mitigate cross-NUMA effects on some of the benchmark
results, we run those benchmarks on only one socket of the
NUMA domains. In practice, this was achieved by using the
Linux utility tool taskset. In Section VI, we explicitly
mention the benchmarks that were run on a single NUMA
domain. The implementations and benchmarks can be found
on Github2.

To profile the GPU kernel and the performance metrics
we made use of nvprof, which is part of the CUDA SDK
Toolkit. Prior to recording the timing data for profiling GPU
benchmarks, we run five iterations of the kernel to warm up
the GPU. This measure is necessary for the following reasons:
1) the GPU could initially be in a power-saving state and
therefore not perform optimally on the first run, 2) just-in-
time compilation of the kernel requires more time on the first
compilation, 3) additional time could be taken for transferring
the kernel binary to GPU memory.

To quantify the performance of our solutions, we perform
three types of analyses. First, we run the cell division bench-
mark (benchmark A) that was introduced in Section III. With
this benchmark, we will quantify the performance of each
solution in Section IV. Second, we created a benchmark
(benchmark B) to analyze the performance among models
with different local neighborhood densities. The cell division
benchmark has a fixed average number of neighboring agents
per agent, and therefore only represents models with the same
neighborhood density. With the second benchmark, we vary
the average neighborhood density by spawning two million

2https://github.com/Senui/hicomb benchmarks

100 101 102 103

GPU Version III
GPU Version II
GPU Version I
GPU Version 0

UG-method (20 threads)
UG-method (serial)

Baseline (20 threads)
Baseline (serial)

94
130

49
25

14
2

3
1

Speedup

Fig. 9: The speedup with respect to the serial baseline version
as obtained with benchmark A. The GPU results are obtained
from the CUDA runtime on system A.

agents on random positions in variable-sized simulation space.
Consequently, the average number of neighboring agents per
agent will be greater if the simulation space is smaller. To
maintain a constant neighborhood density over the simulated
time, we set the maximum displacement value of each agent
to zero. The (neighboring) agents will stay locked in space,
and therefore the neighborhood density will stay constant.
The timing results of the benchmarks will exclude the model
initialization time (creating the agents, assigning behaviors,
etc.), and focus on the simulation performance. Thirdly, to
understand the performance limitations of the current GPU
implementation, we perform a roofline analysis [20] on the
best performing GPU implementation. Through this analysis,
we will understand how far the current implementation is from
the maximum attainable performance on system B. We use the
Empirical Roofline Tool (ERT) [21] to measure the empirical
performance numbers of system B and to generate the roofline
analysis plot. We retrieve the performance result (in GFLOP/s)
and the arithmetic intensity (FLOPs/byte) of the GPU kernel
with the use of nvprof.

VI. RESULTS

Fig. 8 shows the runtimes obtained from running benchmark
A for the various implementations of the mechanical inter-
action operation in BioDynaMo. Fig. 9 shows the obtained
speedups comparison to the serial baseline version. Note that
the x-axis is scaled logarithmically in both figures. The order
of the bar charts follows from the order in which the versions
were introduced in Section IV. Consecutive GPU versions
include the implementation of the prior version, so for example



1 3 6 11 17 27 35 47
103

104

105

106

Number of neighbors per agent

R
un

tim
e

(m
s)

Intel Xeon 6130 (4 threads)
Intel Xeon 6130 (8 threads)
Intel Xeon 6130 (16 threads)
Intel Xeon 6130 (32 threads)
Intel Xeon 6130 (64 threads)
Tesla V100

Fig. 10: The runtime of benchmark B for a varying neigh-
borhood density. The Intel Xeon entries represent the baseline
version. The Tesla V100 entries represent the best performing
GPU implementation. The GPU results are obtained from the
CUDA runtime on system B.

GPU version II includes the changes made for GPU version
I. The results in Fig. 9 are obtained from running benchmark
A on system A.

The serial uniform grid (UG) method performs twice as fast
as the serial kd-tree method. On all 20 cores of the system (on
a single NUMA domain), the UG method is 8226

1910 = 4.3 times
faster than the kd-tree method. This can be attributed to the
parallel construction of the uniform grid as opposed to the
serial construction of the kd-tree.

The initial version of the GPU implementation (GPU
version 0 in Fig. 9) of the UG method already offers an
8226
1039 = 7.9× speedup as compared to the multithreaded
baseline version and is 1910

1039 = 1.8 times faster than its
multithreaded CPU version. Even though the kernel is not yet
optimized, due to the massively parallel architecture of the
GPU we are able to attain a significant speedup compared to
the multithread CPU version.

From Fig. 9 we can see about a 1039
527 = 2.0 speedup gained

from reducing the data types that define a cell’s state from
doubles to floats. From Table I we can see that the FP32
throughput is 32 times greater than the FP64 throughput. From
our speedup result, it becomes clear that the current GPU
solution is limited by the memory bandwidth. Since FP32 data
types are 4 bytes and FP64 data types are 8 bytes, the expected
speedup of a GPU application that is memory bound and
heavily relies on floating-point operations is two. We verified
that the correctness of the simulations was not affected as a
result of reducing the floating-point precision by running the
unit tests and integration tests that are included in the testing
suite of BioDynaMo.

Sorting the agents’ state data based on a space-filling curve

1 3 6 11 17 27 35 47
50

100

150

200

250

300

Number of neighbors per agent

Sp
ee

du
p

Intel Xeon 6130 (4 threads)
Intel Xeon 6130 (8 threads)
Intel Xeon 6130 (16 threads)
Intel Xeon 6130 (32 threads)
Intel Xeon 6130 (64 threads)

Fig. 11: The speedups with respect to the baseline version (for
various numbers of threads) as obtained with benchmark B for
a varying neighborhood density. The GPU results are obtained
from the CUDA runtime on system B.

proved to reduce the execution time significantly, namely
527
199 = 2.6 times in comparison to the previous GPU version.
This speedup confirms that the GPU kernel enjoys more spatial
data locality when the agents’ state data is sorted. As a result,
memory accesses are more coalesced, which in turn leads to
an increase in cache hits. This reduces the overall latency of
obtaining the required neighborhood data from memory.

Redesigning the GPU kernel to utilize shared memory
resources appears to worsen the overall performance by 28%.
One of the reasons we found that causes the kernel perfor-
mance to deteriorate, is the introduction of atomic operations
in the kernel. The use of atomics is necessary to build the
shared data structures that were introduced in Section IV-E in
parallel. However, this causes stalling when multiple threads
try to update the same shared data object. Moreover, the kernel
needs to perform boundary checks on the blocks (CUDA) or
workgroups (OpenCL) that are being executed by the GPU,
which gives rise to thread divergence.

Fig. 10 and Fig. 11 summarize the results from running
benchmark B on system B. The CPU results up to 32 threads
were obtained by running on a single NUMA domain on
system B. Fig. 10 shows the runtimes of the multithreaded
baseline version (4, 8, 16, 32, and 64 threads) and the best
performing GPU version (GPU version II), for a varying
number of neighboring agents per agent. From the figure,
it becomes clear that increasing the number of threads in
a CPU-only runtime only reduces the runtime marginally,
whereas GPU co-processing shows a significant reduction in
runtime. Fig. 11 shows the speedup of the GPU runtime in
comparison to the multithreaded baseline version. We observe
that the speedup in comparison to the baseline version running



with 4 threads lies between 160× to 232×, depending on
the neighborhood density. For the baseline version with 64
threads, the speedup lies between 71× to 113×. These results
imply that simulations that are densely populated, enjoy a
speedup of up to two orders of magnitude when accelerating
their workload with a GPU. Simulations that would normally
take days on a multi-core CPU can be completed in hours
on systems that feature a GPU. The significant reduction in
simulation runtime allows researchers in the field of biological
ABS to scale out their models and still obtain results rapidly.

In Fig. 11 we notice that the GPU performance gain
stagnates, or even decreases, as the neighborhood density
increases. The GPU kernel parallelizes the mechanical interac-
tion computation for all agents, but the loop over all neighbor-
ing agents is serial. Consequently, this becomes the bottleneck
for models with a high neighborhood density. We would like to
investigate this solution by exploring dynamic parallelism [22]
in existing GPU programming models. We hypothesize that
parallelizing the serial loop over the neighborhood alleviates
the bottleneck that is manifested in Fig. 11.

From the roofline model analysis in Fig. 12, we see that
the best performing GPU implementation is still an order of
magnitude away from the maximum attainable single-precision
floating-point performance on system B. The data points are
however close to the roof that represents the upper bound of
the device memory bandwidth (HBM), which indicates that the
kernel is close to being memory-bound. Future improvements
to the kernel must focus on alleviating the strain on data
transfer between the GPU and the GPU memory. Investigating
other caching methods to bypass the HBM bandwidth roofline
should be the main priority for future improvements. We
observe that the kernel is able to attain higher performance
with a higher neighborhood density. Based on the percentage
of L2 cache reads relative to the number of total (L2 + HBM)
memory reads, as obtained by nvprof, we believe this to
be the result of increased cache reuse of the neighborhood
state data per agent. For n = 47 this percentage is 41.3%, for
n = 27 it is 40.6% and for n = 6 it is 39.4%.

VII. CONCLUSION

The goal of this work was to perform a comparative study
of the acceleration potential of GPU co-processing in BioDy-
naMo to enable fast simulation of large-scale and complex
biological models. To understand what the most effective
way is to improve the performance of simulations such that
large-scale and complex models can be implemented, we
profiled the simulations that BioDynaMo is currently capable
of running. We discovered that the mechanical interactions
operation was the computational bottleneck by a large margin,
due to the required data of local neighboring agents. We
implemented a method alternative to the kd-tree method, the
uniform grid (UG) method, which proved to be an excellent
candidate for exploiting the parallel architecture of GPUs for
performance gain. Not only did the UG method outperform
the kd-tree method on CPU, but it opened up possibilities to
exploit the advantages that GPUs offer. The final GPU kernel

100 101 102

Arithmetic Intensity [FLOPs/Byte]

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

FP32: 14708.0 GFLOP/s

FP64: 7719.3 GFLOP/s

HBM: 782.0 GB/s

V100

n=47
n=27
n=6

n=47
n=27
n=6

Fig. 12: GPU roofline model analysis of various neighborhood
densities on system B, where n is the number of neighbors
per agent.

implementation resulted in speedups between 71× to 232× in
comparison to the multithreaded baseline version, depending
on the number of neighboring agents per agent and the number
of threads the baseline is executed with. This result enables
researchers of cellular agent-based models to rapidly obtain
biologically insightful simulations with BioDynaMo.

FUNDING

This work was supported by the CERN Knowledge Transfer
office [to L.B.] and CERN openlab [to A.H.].

REFERENCES

[1] C. M. Macal and M. J. North, “Agent-based modeling
and simulation,” in Proceedings of the 2009 Winter
Simulation Conference (WSC), IEEE, 2009, pp. 86–98.

[2] G. An, Q. Mi, J. Dutta-Moscato, and Y. Vodovotz,
“Agent-based models in translational systems biology,”
Wiley Interdisciplinary Reviews: Systems Biology and
Medicine, vol. 1, no. 2, pp. 159–171, 2009.

[3] B. Di Ventura, C. Lemerle, K. Michalodimitrakis, and
L. Serrano, “From in vivo to in silico biology and back,”
Nature, vol. 443, no. 7111, pp. 527–533, 2006.

[4] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios,
D. Neumaier, A. Seabaugh, S. K. Banerjee, and L.
Colombo, “Electronics based on two-dimensional mate-
rials,” Nature nanotechnology, vol. 9, no. 10, pp. 768–
779, 2014.

[5] G. E. Moore et al., Cramming more components onto
integrated circuits, 1965.

[6] L. Breitwieser, A. Hesam, J. de Montigny, V.
Vavourakis, A. Iosif, J. Jennings, M. Kaiser, M. Manca,
A. D. Meglio, Z. Al-Ars, F. Rademakers, O. Mutlu,
and R. Bauer, Biodynamo: A general platform for
scalable agent-based simulation, 2021. arXiv: 2006 .
06775 [cs.CE].

https://arxiv.org/abs/2006.06775
https://arxiv.org/abs/2006.06775


[7] M. Lysenko and R. M. D’Souza, “A framework for
megascale agent based model simulations on graphics
processing units,” Journal of Artificial Societies and
Social Simulation, vol. 11, no. 4, p. 10, 2008, ISSN:
1460-7425. [Online]. Available: http://jasss.soc.surrey.
ac.uk/11/4/10.html.

[8] P. Richmond, D. Walker, S. Coakley, and D. Romano,
“High performance cellular level agent-based simu-
lation with FLAME for the GPU,” en, Briefings in
Bioinformatics, vol. 11, no. 3, pp. 334–347, May 2010,
Publisher: Oxford Academic, ISSN: 1467-5463. DOI: 10.
1093/bib/bbp073. [Online]. Available: https://academic.
oup . com / bib / article / 11 / 3 / 334 / 225993 (visited on
10/08/2020).

[9] S. Ren, K. Bertels, and Z. Al-Ars, “Efficient accelera-
tion of the pair-hmms forward algorithm for gatk hap-
lotypecaller on graphics processing units,” Evolutionary
Bioinformatics, vol. 14, p. 1 176 934 318 760 543, 2018,
PMID: 29568218. DOI: 10 .1177 /1176934318760543.
eprint: https : / / doi . org / 10 . 1177 / 1176934318760543.
[Online]. Available: https : / / doi . org / 10 . 1177 /
1176934318760543.

[10] G. Smaragdos, G. Chatzikonstantis, R. Kukreja, H.
Sidiropoulos, D. Rodopoulos, I. Sourdis, Z. Al-Ars,
C. Kachris, D. Soudris, C. I. D. Zeeuw, and C. Strydis,
“BrainFrame: A node-level heterogeneous accelerator
platform for neuron simulations,” Journal of Neural
Engineering, vol. 14, no. 6, p. 066 008, Nov. 2017. DOI:
10.1088/1741-2552/aa7fc5. [Online]. Available: https:
//doi.org/10.1088/1741-2552/aa7fc5.

[11] J. Nickolls and W. J. Dally, “The gpu computing era,”
IEEE micro, vol. 30, no. 2, pp. 56–69, 2010.

[12] P. Van Liedekerke, M. Palm, N. Jagiella, and D. Drasdo,
“Simulating tissue mechanics with agent-based models:
Concepts, perspectives and some novel results,” Compu-
tational particle mechanics, vol. 2, no. 4, pp. 401–444,
2015.

[13] S. Kang, S. Kahan, J. McDermott, N. Flann, and I.
Shmulevich, “Biocellion: Accelerating computer simu-
lation of multicellular biological system models,” Bioin-
formatics, vol. 30, no. 21, pp. 3101–3108, 2014.

[14] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M.
Mumenthaler, and P. Macklin, “Physicell: An open
source physics-based cell simulator for 3-d multicellular
systems,” PLoS computational biology, vol. 14, no. 2,
e1005991, 2018.

[15] M. Cytowski and Z. Szymanska, “Large-scale parallel
simulations of 3d cell colony dynamics,” Computing in
Science & Engineering, vol. 16, no. 5, pp. 86–95, 2014.

[16] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R.
Bordas, J. Cooper, A. Corrias, Y. Davit, S.-J. Dunn,
A. G. Fletcher, D. G. Harvey, et al., “Chaste: An open
source c++ library for computational physiology and
biology,” PLoS computational biology, vol. 9, no. 3,
e1002970, 2013.

[17] A. Hauri, “Self-construction in the context of cortical
growth: From one cell to a cortex to a programming
paradigm for self-constructing systems,” Ph.D. disser-
tation, ETH, 2013.

[18] Wikimedia Commons, File:four-level z.svg — wiki-
media commons, the free media repository, [Online;
accessed 20-August-2018], 2018.

[19] G. M. Morton, “A computer oriented geodetic data base
and a new technique in file sequencing,” 1966.

[20] S. Williams, A. Waterman, and D. Patterson, “Roofline:
An insightful visual performance model for multicore
architectures,” Communications of the ACM, vol. 52,
no. 4, pp. 65–76, 2009.

[21] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi,
A. Adetokunbo, B. Friesen, B. Cook, D. Doerfler,
L. Oliker, et al., “An empirical roofline methodology
for quantitatively assessing performance portability,” in
2018 IEEE/ACM International Workshop on Perfor-
mance, Portability and Productivity in HPC (P3HPC),
IEEE, 2018, pp. 14–23.

[22] S. Jones, “Introduction to dynamic parallelism,” in GPU
Technology Conference Presentation S, vol. 338, 2012,
p. 2012.

http://jasss.soc.surrey.ac.uk/11/4/10.html
http://jasss.soc.surrey.ac.uk/11/4/10.html
https://doi.org/10.1093/bib/bbp073
https://doi.org/10.1093/bib/bbp073
https://academic.oup.com/bib/article/11/3/334/225993
https://academic.oup.com/bib/article/11/3/334/225993
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1088/1741-2552/aa7fc5
https://doi.org/10.1088/1741-2552/aa7fc5
https://doi.org/10.1088/1741-2552/aa7fc5

	I Introduction
	II Related Work
	III Problem Definition
	IV Methodology
	IV-A Uniform Grid Method
	IV-B GPU Implementation
	IV-C Improvement I: Reduction in Floating-Point Precision
	IV-D Improvement II: Space-filling Curve Sorting
	IV-E Improvement III: Using Shared Memory

	V Experimental Setup
	VI Results
	VII Conclusion

