
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:2
https://doi.org/10.1007/s41781-020-00047-7

ORIGINAL ARTICLE

Event Classification with Quantum Machine Learning in High‑Energy
Physics

Koji Terashi1 · Michiru Kaneda1 · Tomoe Kishimoto1 · Masahiko Saito1 · Ryu Sawada1 · Junichi Tanaka1

Received: 19 March 2020 / Accepted: 16 November 2020
© The Author(s) 2021

Abstract
We present studies of quantum algorithms exploiting machine learning to classify events of interest from background events,
one of the most representative machine learning applications in high-energy physics. We focus on variational quantum
approach to learn the properties of input data and evaluate the performance of the event classification using both simula-
tors and quantum computing devices. Comparison of the performance with standard multi-variate classification techniques
based on a boosted-decision tree and a deep neural network using classical computers shows that the quantum algorithm
has comparable performance with the standard techniques at the considered ranges of the number of input variables and
the size of training samples. The variational quantum algorithm is tested with quantum computers, demonstrating that the
discrimination of interesting events from background is feasible. Characteristic behaviors observed during a learning process
using quantum circuits with extended gate structures are discussed, as well as the implications of the current performance
to the application in high-energy physics experiments.

Keywords Quantum computing · Machine learning · HEP data analysis · Classification

Introduction

The field of particle physics has been recently driven by
large experiments to collect and analyze data produced in
particle collisions occurred using high-energy accelerators.
In high-energy physics (HEP) experiments, particles cre-
ated by collisions are observed by layers of high-precision
detectors surrounding collision points, producing a large
amount of data. The large data volume has motivated the
use of machine learning (ML) techniques in many aspects
of experiments to improve their performances (see, e.g., [1]
for a living review of ML techniques to particle physics).
In addition, computational resources are expected to be
reduced for specific tasks by adopting relatively new tech-
niques such as ML. This will continue over next decades;
for example, a next-generation proton–proton collider, called
high-luminosity large hadron collider (HL-LHC) [2, 3], at
CERN1 is expected to deliver a few exabytes of data every

year and requires very large computing resources for the data
processing. Quantum computing (QC), on the other hand,
has been evolving rapidly over the past years, with a prom-
ise of a significant speed-up or reduction of computational
resources in certain tasks. Early attempts to use QC for HEP
have been made, e.g., on data analysis [4, 5], identification
of charged particle trajectories [6–9], reconstruction of par-
ticle collision points [10] and particle spray called jets [11],
as well as the simulation of event generation called parton
shower [12, 13]. The techniques developed in HEP are also
adapted to QC, e.g., the unfolding techniques for physics
measurement are applied to QC in Refs. [14, 15]. Among
these attempts, the quantum machine learning (QML) is
considered as one of the QC algorithms that could bring
quantum advantages over classical methods, as discussed in
the literature, e.g., [16].

Most frequently used ML technique in HEP data analysis
is the discrimination of events of interest, e.g., signal events
originating from new physics beyond the Standard Model
of particle physics, from background events. In this paper,
we have investigated the application of QML techniques to
the task of the event classification in HEP data analysis. To

 * Koji Terashi
 koji.terashi@cern.ch

1 International Center for Elementary Particle Physics
(ICEPP), The University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan

1 The European Organization for Nuclear Research located in
Geneva, Switzerland, https ://www.cern.ch

http://orcid.org/0000-0001-6520-8070
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-020-00047-7&domain=pdf
https://www.cern.ch

 Computing and Software for Big Science (2021) 5:2

1 3

 2 Page 2 of 11

our knowledge, the first attempt to utilize QC for HEP data
analysis is performed in Ref. [4] for the classification of the
Higgs boson using quantum annealing [17].

We focus on QML algorithms developed for gate-based
quantum computer, in particular the algorithms based on
variational quantum circuit [18]. In the variational circuit
approach, the classical input data are encoded into quantum
states and a quantum computer is used to obtain and meas-
ure the quantum states which vary with tunable parameters.
Exploiting a complex Hilbert space that grows exponentially
with the number of “quantum bits” (or qubits) in quantum
computer, the representational ability of the QML is far
superior to classical ML that grows only linearly with the
number of classical bits. This motivates the application of
ML techniques to quantum computer, which could lead to
an advantage over the classical approach. The optimization
of the parameters is performed using classical computer;
therefore, the variational method is considered to be suit-
able for the present quantum computer, which has difficulty
in processing deep quantum circuits due to limited quantum
coherence. Practically, actual performance of the variational
quantum algorithm depends on the implementation of the
algorithm and the properties of the QC device. The primary
aim of this paper is to demonstrate the feasibility of ML
for the event classification in HEP data analysis using gate-
based quantum computer.

The variational quantum algorithms are described in the
next section, followed by the classical approaches that are
used for the comparison. The subsequent section discusses
the experimental setup used in the study, including the
dataset, software simulator and quantum computer. Then
the results of the experiments are discussed, followed by
discussions on several observations about the performance
of the quantum algorithms. We conclude the studies in the
final section.

Algorithms

Variational Quantum Approaches

In this study, we consider an approach based on variational
quantum circuit with tunable parameters [18]. The quantum
circuit used in this algorithm is constructed, as shown in
Fig. 1, using three components: (1) quantum gates to encode
classical input data x into quantum states (denoted as Uin(x)),
(2) quantum gates to produce output states used for super-
vised learning (denoted as U(�)) and (3) measurement gates
to obtain output values from the circuit that are subsequently
compared with the corresponding input labels y . In this
study, the measurement is performed 1024 times on each
event with the Pauli-Z operators and the average value of the
measurements is used for improving the statistical accuracy.

For the classification of events into two categories, the first
two qubits are typically measured. The U(�) gates used in
(2) are parameterized such that they are optimized to model
input training data by iterating the computational processes
of (1)–(3) by Niter times and tuning the parameters � . The
parameter tuning is performed using a classical computer
by minimizing a cost function, which is defined such that
a difference between the input labels y and the measured
values ⟨Z⟩ can be quantified. The optimized U(�) circuit with
the tuned parameters is used, with the same Uin(x) gates,
to classify unseen data for testing. The Uin(x) and U(�) are
often built using a same set of quantum gates with different
parameters multiple times to enhance the representational
ability of the data. The numbers of the repetition used for the
Uin(x) and U(�) are denoted by Ndepth

in
 and Ndepth

var , respectively.
In this study, we use two implementations of the vari-

ational quantum algorithms, called quantum circuit learn-
ing (QCL) [19] and variational quantum classification
(VQC) [20]. The QCL is used for testing the performance
of the variational quantum algorithm on simulator. The VQC
is used for testing the algorithm on both real quantum com-
puter and simulator with small samples.

Quantum Circuit Learning

A QCL circuit used in this study for the 3-variable classifica-
tion is shown in Fig. 2. The Uin(x) in QCL is characterized
by the series of single-qubit rotation gates RY and RZ [19].
The angles of the rotation gates are obtained from the input
data x to be sin−1(x) and cos−1(x2) , respectively. The input
data are needed to be normalized within the range [−1 , 1]
by scaling linearly using the maximum and minimum val-
ues of the input variables. The normalization is performed
separately for the training and testing samples to avoid data

Fig. 1 Representative variational quantum circuit used for the event
classification in this study. {x, y} is a set of pairs composed of an
input data x and an input label y (desired output value). ⟨Z⟩ is an out-
put from the quantum circuit. The components of the circuit and their
roles are explained in the text

Computing and Software for Big Science (2021) 5:2

1 3

Page 3 of 11 2

beyond the [−1 , 1] range. In this case, the classification
performance is slightly suboptimal for the testing sample.
The effect is, however, checked to be small by comparing
the performance with the case where the testing sample is
normalized with the scaling derived from the training sam-
ple and clipped to [−1 , 1]. The U(�) is constructed using a
time-evolution gate, denoted as e−iHt , with the Hamiltonian
H of an Ising model with random coefficients (for creat-
ing entanglement between qubits) and the series of RX , RZ
and RX gates with angles as parameters. The nominal Ndepth

var
value is set to 3 after optimization studies. This results in 27
parameters in total for the 3-variable case. The structure for
the 5- and 7-variable circuits is the same as the 3-variable
case, leading to the total parameters of 45 and 63, respec-
tively. The measurement is performed on the first two qubits
using the Pauli-Z operators, and the outcome of the measure-
ment is fed into the cost function via softmax. The cost func-
tion is defined using a cross-entropy function in scikit-learn
package [21], and the minimization of the cost function is
performed using COBYLA. See [19] for more details about
the implementation.

Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classifica-
tion used in this study. The Uin(x) consists of a set of Had-
amard gates and rotation gates with angles from the input
data x (the latter is represented as U�(x) in the figure). The
U�(x) is composed of single-qubit rotation gates of the form
U�{k}

(x) = exp (i�{k}(x)Zk) , a diagonal phase gate with the
linear function of �{k}(x) = xk . This is identical to the one
used in Ref. [20] as the single-qubit gate (see Eq. (32) of the
supplementary information of Ref. [20]), and is referred to
as the“first-order expansion” (FOE). The U�(x) is not
repeated in this study unless otherwise stated; thus,
N

depth

in
= 1 . The U(�) part of the circuit is also taken from that

in [20] but simplified by not repeating a set of entangling
gate (Uent) and single-qubit rotation gates RY and RZ (sur-
rounded by the dashed box in Fig. 3). The Uent is imple-
mented using the Hadamard and CNOT gates, as in Fig. 3.
The total number of � parameters is 12 (20, 28) for the 3 (5,
7)-variable classification. The measurement is performed on
all the qubits using the Pauli Z operators, and the measured
outcomes are fed into the cost function. The cost function
for the VQC algorithm is a cross-entropy function and the
minimization is performed using COBYLA as well.

Classical Approaches

The ML application to the classification of events has been
widely attempted in HEP data analyses. Among others, a
boosted decision tree (BDT) in the TMVA framework [22]
is one of the most commonly used algorithms. A neural net-
work (NN) is another class of multi-variate analysis meth-
ods, and an algorithm with a deep neural network (DNN) has
been proven to be powerful for modelling complex multi-
dimensional problems. We use BDT and DNN as benchmark
tools for comparison with the performance of the variational
quantum algorithms.

In this study, we use the TMVA package 4.2.1 for the
BDT and the Keras 2.1.6 with TensorFlow 1.8.0 backend
for the DNN. The BDT and DNN parameters used are
summarized in Table 1. The maximum depth of the deci-
sion tree (MaxDepth) and the number of trees in the for-
est (NTrees) vary with the number of events used in the
training (N train

event
) to avoid over-training. The DNN model is a

fully connected feed-forward network composed of 2–6 hid-
den layers with 16–256 nodes each. The numbers of hidden
layers and nodes per layer are varied according to N train

event
 to

avoid over-training.

Fig. 2 Uin(x) and U(�) circuits used in this study for the QCL algo-
rithm

Fig. 3 Uin(x) and U(�) circuits used in this study for the VQC algo-
rithm

 Computing and Software for Big Science (2021) 5:2

1 3

 2 Page 4 of 11

Experimental Setup

Our experimental test of the variational quantum algorithms
is performed using both simulators of quantum computers
and real quantum computers available via the IBM Q Net-
work [23]. As a benchmark scenario for the HEP data analy-
sis, we consider a problem of discriminating events with
supersymmetry (SUSY) particles from the most representa-
tive background events.

Dataset

We use the “SUSY Data Set” available in the UC Irvine
Machine Learning Repository [24], which was prepared
for studies of Ref. [25]. The signal process, labelled true,
targets a chargino-pair production via a Higgs boson. Each
chargino decays into a neutralino that escapes detection

and a W-boson that subsequently decays into a charged
lepton and a neutrino, resulting in a final state with two
charged leptons and a missing transverse momentum. The
background process, labelled false, is a W-boson pair pro-
duction (WW) with each W-boson decaying into a charged
lepton and a neutrino. Therefore, both the signal and back-
ground processes have the same final state. Monte Carlo
simulation is used to produce events of these processes as
described in [25].

In our main studies, a small fraction of the data is used
because the process of the full data (5 million events) with
the quantum algorithms requires significant computing
resources. For the comparison of the quantum and classi-
cal MLs, five sets of data containing 100, 500, 1000, 5000
and 10,000 events are used for training and other five sets
of data with the same number of events for testing. For the
classical MLs, additional four sets of data containing 50,000,
100,000, 200,000 and 500,000 events are used to study the
dependence on the sample size.

The dataset contains 18 variables characterizing the
properties of the SUSY signal and WW background events,
ranging from low-level variables such as lepton transverse
momenta to high-level variables such as those reflecting
the kinematics of W-bosons and/or charginos (detailed in
[25]). Figure 4 shows the normalized distributions of the
18 variables for the signal and background events. Among
those, the following 3, 5 and 7 variables, which are quoted
as Nvar = 3 , 5 and 7 later, are considered in the main study:

3 variables: plep1
T

 , plep2
T

 and Emiss
T

,
5 variables: 3 variables above, MT

R
 , MR

Δ
,

7 variables: 5 variables above, �lep1 , �lep2.

The choice of these variables is made as follows: first, the
combination of three variables is determined by testing dif-
ferent combinations of the variables using the DNN algo-
rithm and taking the one with the highest AUC (area under
ROC curve) value. Starting with the selected variables of
Nvar = 3 , more variables are sequentially added and deter-
mined in the same way for Nvar = 5 and 7. In addition, all
the 18 variables are used for evaluating the best performance
which the classical MLs can reach (“Qulacs Simulator”).

Simulator

We use quantum circuit simulators to evaluate the per-
formance of the quantum algorithms. The QCL circuit is
implemented using Qulacs 0.1.8 [26], a fast quantum cir-
cuit simulator implemented in C++, with Python 3.6.5 and
gcc 7.3.0, and the performance is evaluated on cloud Linux
servers managed by OpenStack at CERN. The Qulacs sup-
ports the use of GPU, but it is not exploited in this study.

Table 1 Parameter settings for the BDT and DNN used in this study

The definitions of the BDT parameters are documented in Ref. [22]

BDT parameter Value

BoostType Grad
NTrees 10 (N train

event
= 0.1K),

100 (0.5K ≤ N
train
event

≤ 10K),
1000 (N train

event
≥ 50K)

MaxDepth 1 (N train
event

≤ 1K),
2 (5K ≤ N

train
event

≤ 100K),
3 (N train

event
≥ 200K)

nCuts 20
MinimumNodeSize 2.5%
UseBaggedBoost True
BaggedSampleFraction 0.5

DNN parameter Value

Layer type Dense
Number of hidden layers 2 (N train

event
= 0.1K or 1K),

3 (N train
event

= 0.5K),
4 (5K ≤ N

train
event

≤ 100K),
6 (N train

event
≥ 200K)

Number of nodes per hidden layer 16 (0.1K ≤ N
train
event

≤ 0.5K),
64 (1K ≤ N

train
event

≤ 10K),
128 (50K ≤ N

train
event

≤ 100K),
256 (N train

event
≥ 200K)

Activation function Rectified linear unit
Optimizer Adam
Learning rate 0.001
Batch size None (N train

event
≤ 10K),

2048 (N train
event

≥ 50K)
Batch normalization No
Number of epochs 100 with early stopping

Computing and Software for Big Science (2021) 5:2

1 3

Page 5 of 11 2

The VQC circuit is implemented using Aqua 0.6.1 in the
Qiskit 0.14.0 [27], a quantum computing software devel-
opment framework (Qiskit Aqua framework). The VQC
performance is evaluated using a QASM simulator on a
local machine as well as real quantum computer explained
in the next section. No wall-time comparison is made
between the simulators in this study.

The Qulacs simulator has capability of executing the
variational quantum algorithm with more variables or
more data events than the QASM simulator. This allows
us to evaluate the performance of the quantum algorithm
in more realistic settings.

Quantum Computer

We use the 20-qubit IBM Q Network quantum computers,
called Johannesburg [28] and Boeblingen [29], for evalu-
ating the VQC performance. The quantum computers are
accessed using the QuantumInstance class in the Qiskit
Aqua framework. The Uin(x) part of the VQC circuit (Fig. 3)
is created separately for each event because the U�(x) gates
depend on the input data x . For the training and testing, we
use 40 events each, composed of 20 signal and 20 back-
ground events. The � parameters are determined by iterating

the training process as explained in “Variational quantum
approaches”. The Niter is set to 100 unless otherwise stated.

Results

Qulacs Simulator

First, the classification performance of the QCL algorithm
evaluated using the Qulacs simulator is compared with those
of the BDT and DNN. Due to a significant increase of the
computational resources with Nvar for the QCL (discussed in
“CPU/memory usages for QCL implementation”), the Nvar
is considered only up to 7.

Figure 5 shows ROC curves in the testing for the three
algorithms with Nvar = 7 and N train

event
= 10,000 , and Fig. 6

shows the comparisons of the AUC values as a function of
N train
event

 for Nvar = 3 , 5 and 7. For each algorithm, a single AUC
value is obtained from a test sample after each training, and
the calculation is repeated 100 (30) times at N train

event
≤ 10,000

(50,000 ≤ N train
event

≤ 500,000). The center and the width of
each curve in Fig. 5 correspond to the average value and the
standard deviation of the true-/false-positive rates obtained
from the repeated calculations over the training and test

Fig. 4 Normalized distributions of input variables for SUSY signal
(solid histograms) and background (dashed histograms). The first
nine variables up to Emiss

T, rel
 are low-level features and the last nine are

high-level ones. The main variables used in the study are highlighted
in grey on the background while all the variables are considered for
the DNN and BDT, as discussed in the text

 Computing and Software for Big Science (2021) 5:2

1 3

 2 Page 6 of 11

samples. Shown in Fig. 6 is the average of the resulting
AUC values and the standard deviations of the average. As
expected, it is apparent from the BDT and DNN curves that
the performance of these two algorithms improves rapidly
with increasing N train

event
 and then flattens out. The BDT works

well over the entire N train
event

 range while the DNN performance
appears to improve faster at very small N train

event
 and exceed

BDT at N train
event

 beyond ∼ 1000 . In the case of Nvar = 7 and
N train
event

= 500,000 , the AUC values are 0.8729 ± 0.0003 for
the DNN and 0.8696 ± 0.0006 for the BDT. When using all
the 18 variables with 2,000,000 events for the training and
testing each, the average AUC value from only five trials
is 0.8772 ± 0.0004 (0.8750 ± 0.0004) for the DNN (BDT).

The performance of the QCL algorithm is character-
ized by the relatively flat AUC values regardless of N train

event
 .

Increasing the Nvar appears to degrade the performance if
the N train

event
 is fixed, and the same behavior is also seen for the

DNN with N train
event

≤ 500 (not clearly visible for the BDT).
Further studies show that the QCL performance of the flat
AUC value and the degradation with increasing Nvar is
related to the choice of the variables: the Nvar = 3 variables
used have sufficient information for the QCL algorithm to
discriminate the signal from background, and no positive
impact is seen on the performance by adding more variables
or more events. However, it is seen that the performance
improves by adding them if different combinations of the
variables are selected. The DNN algorithm overcomes the
degradation and eventually improves the performance with
increasing Nvar by using more data. Investigating how the
QCL algorithm behaves with more data is a future subject.
Nevertheless, for the Nvar and N train

event
 (≤ 10,000) ranges con-

sidered all the three algorithms have a comparable discrimi-
nating power with the AUC values of 0.80–0.85.

Quantum Computer and QASM Simulator

The VQC algorithm with Nvar = 3 has been tested on the
20-qubit IBM Q Network quantum computers and the QASM
simulator, as explained in “Quantum computer”. The present
study focuses only on the classification accuracy with the
real quantum computer. Figure 7 shows the values of the
cost function in the training as a function of Niter for both
the quantum computer and the simulator. For each of the
quantum computer and the simulator, the training is repeated
five times over the same set of events and their cost-function
values are shown. When running the algorithm on the quan-
tum computer, the first three hardware qubits [0, 1, 2] are
used [30]. The figure shows that both the quantum computer
and the simulator have reached the minimum values in the
cost function after iterating about 50 times. However, the cost
values for the quantum computer are constantly higher and
more fluctuating after reaching the minimum values.

The ROC curves for the quantum computer and the sim-
ulator obtained from the training and testing samples are
shown in Fig. 8, averaged over the five trials of the training
or testing. The AUC values for the testing samples are con-
siderably worse than those for the training ones because of
the small sample sizes. This has been checked by increas-
ing the N train

event
 from 40 to 70, 100, 200, 500 and 1000 for

the simulator (Table 2). As seen in the table, the over-
training largely disappears as the sample sizes increase.
Figure 9 shows the ROC curves from the simulator for the
two sample sizes of N train

event
= 40 and 1000, confirming that

the over-training is not significant for the latter.

Fig. 5 ROC curves obtained from the test sample for the BDT, DNN
and QCL algorithms with Nvar = 7 and N train

event
= 10,000 . The error

bands correspond to the standard deviations of the values obtained by
repeating the calculation over the training and test samples

Fig. 6 Average AUC values (calculated from the test samples) as
a function of the training sample size for the BDT, DNN and QCL
algorithms with Nvar = 3 (circles), 5 (squares) and 7 (triangles). For
the BDT and DNN, the average AUC values for the training sample
of 2,000,000 events and 18 variables are also shown with the plus
markers. The error bars represent the standard deviations of the aver-
age AUC values. The BDT and DNN points are slightly shifted hori-
zontally from the nominal N train

event
 values to avoid overlapping

Computing and Software for Big Science (2021) 5:2

1 3

Page 7 of 11 2

The AUC values are consistent between the quantum
computer and the simulator within the standard deviation
(Fig. 8), but the simulator results are considered to be sys-
tematically better because the input samples are identi-
cal. In Table 3, the VQC results are compared with the
QCL being executed at the same condition, i.e., Nvar = 3 ,
N train
event

= 40 and Niter = 100 . The QCL results vary with the
depth of the U(�) circuit (the nominal Ndepth

var is 3), but they
agree with the VQC results within relatively large uncer-
tainties. Summarized in Table 3 are the AUC values and
their standard deviations in the training of the VQC and
QCL algorithms.

Discussion

Performance with Different QCL Models

As seen in Fig. 6, the QCL performance stays approxi-
mately flat in N train

event
 and gets slightly worse when increas-

ing the Nvar at fixed N train
event

 . Since the computational
resources needed to explore the QCL model with more
variables (Nvar >≈ 10) or larger sample sizes (N train

event
> 10

K) are beyond our capacity (“CPU/memory usages for
QCL implementation”), understanding the behavior and
the dependence on the Nvar or N train

event
 is a subject for future

study.
To investigate a possibility that the QCL performance

could be limited by insufficient flexibility of the circuit
used (Fig. 2), alternative QCL models with the U(�) circuit
of Ndepth

var = 5 or 7, instead of 3, are tested. This changes the
AUC values by 1–2% at most for the N train

event
 of 100 or 1000

events, which is negligible compared to the statistical fluc-
tuation. Another type of QCL circuit is also considered by
modifying the Uin(x) to include 2-qubit gates for creating
entanglement, as shown in Fig. 10 (as motivated by the
second-order expansion in VQC; see “Performance with
different VQC models”). It turns out that the QCL with
the new Uin(x) does not increase the AUC values when the
U(�) is fixed to the original model with Ndepth

var = 3 in Fig. 2.
On the other hand, the new Uin(x) appears to improve the
performance by 5–10% with respect to the original Uin(x)
when Ndepth

var is set to 1. This indicates that a more complex
structure in the Uin(x) could help improve the performance
when the U(�) is simplified. However, the performance of
the new Uin(x) with Ndepth

var = 1 is still considerably worse
than the nominal QCL model in Fig. 2.

Fig. 7 Evolution of the cost function value in the training of the VQC
algorithm with Nvar = 3 and N train

event
= 40 . Shown are the cost function

values observed in 5 training trials for quantum computer and QASM
simulator

Fig. 8 ROC curves in the training and testing of the VQC algorithm
with Nvar = 3 and N train

event
= 40 . Shown are the ROC curves (averaged

over five trials in the training or testing) for quantum computer and
QASM simulator. The size of the markers represents the standard
deviation of the trials. The values in the legend give the average AUC
values and the standard deviations

Table 2 AUC values in the testing and training for the VQC algo-
rithm running on the QASM simulator

The training condition is fixed to Nvar = 3 and Niter = 100 for all
N

train
event

 cases. The uncertainties correspond to the standard deviations
of the average AUC values over the trials

N
train
event

 (= N
test
event

) Testing Training

40 0.555 ± 0.032 0.813 ± 0.012

70 0.716 ± 0.037 0.741 ± 0.022

100 0.708 ± 0.039 0.761 ± 0.025

200 0.812 ± 0.012 0.741 ± 0.014

500 0.779 ± 0.008 0.796 ± 0.007

1000 0.779 ± 0.008 0.789 ± 0.005

 Computing and Software for Big Science (2021) 5:2

1 3

 2 Page 8 of 11

Performance with Different VQC Models

The VQC circuit used in this study (Fig. 3) is simplified with
respect to the one used in Ref. [20]. To examine whether
more extended circuits could improve the performance,
alternative VQC models are tested using the QASM simula-
tor. The first alternative model is the one in which the
U�(x) in Fig. 3 (FOE) is replaced with the combination
of single- and two-qubit gates of U�{k}

(x) = exp (i�{k}(x)Zk)
and U�{l,m}

(x) = exp (i�{l,m}(x)ZlZm) w i t h �{l,m}(x) =

(� − x
l
)(� − x

m
) , as used in Ref. [20]. This type of U�(x) is

referred to as the “second-order expansion” (SOE). The sec-
ond alternative model is the one with extended Uin(x) and
U(�) gates by increasing the Ndepth

in
 and Ndepth

var ; this model

includes the combinations of Ndepth

in
 up to 2 and Ndepth

var up to

3, separately for the FOE and SOE in U�(x).
Testing these models using the QASM simulator shows

that the AUC values stay almost constant (within at most
2%) regardless of the Ndepth

in
 or Ndepth

var if the U�(x) is fixed
to either FOE or SOE. But, the performance improves by
about 10% when changing the U�(x) from FOE to SOE at
fixed Ndepth

in
 and Ndepth

var . On the other hand, no improvement
is observed when testing the SOE with a real quantum com-
puter. Moreover, the standard deviation of the AUC values
becomes significantly larger for the SOE with quantum com-
puter. These could be qualitatively understood to be due to
increased errors from hardware noise because the number
of single- and two-qubit gate operations increases by 60%
when switching from the FOE to SOE at Ndepth

in
= N

depth
var = 1 ;

therefore, the VQC circuit with SOE suffers more from the
gate errors.

Comparison with DNN Model with Less Number
of Parameters

A characteristic difference between the QCL and DNN algo-
rithms is on the number of trainable parameters (Npar). As
in “Variational quantum approaches”, the Npar is fixed to
27 (45, 63) for the QCL with 3 (5, 7) variable case. For the
DNN model in Table 1, the Npar varies with N train

event
 as given

in Table 4. Typically the Npar of the DNN model is about
6–13 times more than that of the QCL model at N train

event
= 100 ,

and the ratio increases to 75–165 (200–470) at N train
event

= 1000
(10,000). Comparing the two algorithms with a similar num-
ber of trainable parameters could give more insight into the
QCL performance and reveal a potential advantage of the var-
iational quantum approach over the classical method. A new
DNN model is thus constructed to contain only one hidden
layer with 5 (6, 7) nodes for 3 (5, 7) variable case, resulting
in the Npar of 26 (43, 64). The rest of the model parameters is
identical to that in Table 1. Shown in Fig. 11 is the compari-
son of the AUC values for the new DNN and QCL models at
N train
event

≤ 10,000 . It is indicated from the figure that the QCL
can learn more efficiently than the simple feed-forward net-
work with the similar number of parameters when the sample
size is below 1000. Exploiting this feature in the application
to HEP data analysis would be an interesting future subject.

CPU/Memory Usages for QCL Implementation

The QCL algorithm runs on the Qulacs simulator with cloud
Linux servers, as described in “Simulator”. Under this con-
dition, we examine how the computational resources scale
with the problem size. For the creation of input quantum
states with Uin(x) , both CPU time and memory usage grow
approximately linearly with Nvar or N train

event
 . The creation of

Fig. 9 ROC curves in the training and testing of the VQC algorithm
with N train

event
= 40 and 1000 for Nvar = 3 . Shown are the ROC curves

(averaged over five trials in the training or testing) for QASM simula-
tor. The size of the markers or the band width represents the standard
deviation of the trials. The values in the legend give the average AUC
values and the standard deviations

Table 3 AUC values in the training for the VQC and QCL algorithms
running on quantum computers and simulators

The QCL results are given for Ndepth
var = 1 and 3. The training condi-

tion is fixed to Nvar = 3 , N train
event

= 40 and Niter = 100 for both algo-
rithms. The uncertainties correspond to the standard deviations of the
average AUC values over the trials

Device/condition AUC

VQC Johannesburg 0.799 ± 0.020

Boeblingen 0.807 ± 0.010

QASM simulator 0.815 ± 0.015

QCL Qulacs simulator (Ndepth
var = 1) 0.768 ± 0.082

Qulacs simulator (Ndepth
var = 3) 0.833 ± 0.063

Computing and Software for Big Science (2021) 5:2

1 3

Page 9 of 11 2

the variational quantum states with U(�) shows an exponen-
tial increase in CPU time and memory usage with Nvar (i.e.,
number of qubits) up to Nvar = 12 , roughly a factor 8 (4)
increase in CPU time (memory) by incrementing the Nvar by
one. The overall CPU time is by far dominated by the mini-
mization process with COBYLA. It increases linearly with
N train
event

 but grows exponentially with Nvar , making it imprac-
tical to run the algorithm a sufficient number of times for
Nvar ∼ 10 or more. The memory usage stays constant over
Nvar during the COBYLA minimization process.

Conclusion

In this paper, we present studies of quantum machine
learning for the event classification, commonly used as the
application of conventional machine learning techniques

to high-energy physics. The studies focus on the applica-
tion of variational quantum algorithms using the imple-
mentations in QCL and VQC, and evaluate the perfor-
mance in terms of AUC values of the ROC curves. The
QCL performance is compared with the standard classical
multi-variate classification techniques based on the BDT
and DNN, and the VQC performance is tested using the
simulator and real quantum computers. The overall QCL
performance is comparable to the standard techniques if
the problem is restricted to Nvar ≤ 7 and N train

event
<∼ 10,000 .

The QCL algorithm shows relatively flat AUC values in

Fig. 10 Nominal and alternative
Uin(x) circuits used in QCL to
check impact on the perfor-
mance

Table 4 Number of trainable parameters used in the DNN model of
Table 1

N
train
event

Npar

Nvar = 3 Nvar = 5 Nvar = 7

100 353 385 417
500 625 657 689
1000 4481 4609 4737
5000 12,801 12,929 13,057
10,000 12,801 12,929 13,057
50,000 50,117 50,433 50,689
100,000 50,117 50,433 50,689
200,000 330,241 330,753 331,265
500,000 330,241 330,753 331,265

Fig. 11 Average AUC values (calculated from the test samples) as a
function of the training sample size up to N train

event
= 10,000 for the new

DNN and QCL models with Nvar = 3 (circles), 5 (squares) and 7 (tri-
angles). The error bars represent the standard deviations of the aver-
age AUC values. The DNN points are slightly shifted horizontally
from the nominal N train

event
 values to avoid overlapping

 Computing and Software for Big Science (2021) 5:2

1 3

 2 Page 10 of 11

N train
event

 , in contrast to the BDT and DNN algorithms, which
show that the AUC values increase with increasing N train

event

in the considered N train
event

 range. This characteristic QCL
behavior could be considered as a possible advantage over
the classical method at small N train

event
 where the DNN perfor-

mance gets considerably worse if the number of trainable
parameters of the DNN model is constrained to be similar
to that of the QCL.

The VQC algorithm has been tested on quantum
computers only for a small problem of N train

event
= 40 , but

it shows that the algorithm does acquire the discrimina-
tion power. The VQC performances are similar on the
simulator and real quantum computer within the measured
accuracy. There is, however, an indication of increased
errors due to hardware noise, that could prevent us from
using an extended quantum circuit such as the SOE for
the encoding of classical input data. The QCL and VQC
algorithms show similar performance when they run on
the simulators with the same conditions for the Nvar and
N train
event

 values.
With a better control of the measurement and gate

errors, it is expected that the performance of the vari-
ational quantum machine learning on quantum comput-
ers further improves, as demonstrated in Ref. [20] with
the SOE and increased depth of the variational circuit.
Another potentially promising approach, proposed in
Ref. [31], is to train the encoding part of the variational
algorithm to carry out a maximally separating embedding
of classical input data into Hilbert space. This could pro-
vide a way to perform optimized measurements to distin-
guish different classes of data with a shallow quantum cir-
cuit, potentially reducing the impact from hardware errors
on the variational part of the algorithm.

Acknowledgements We acknowledge the use of IBM Quantum ser-
vices for this work. The views expressed are those of the authors, and
do not reflect the official policy or position of IBM or the IBM Quan-
tum team. We thank Dr. Naoki Kanazawa (IBM Japan), Dr. Tamiya
Onodera (IBM Japan) and Prof. Hiroshi Imai (The University of
Tokyo) for the useful discussion and guidance for addressing the tech-
nical issues occurred during the studies. We acknowledge the support
from using the dataset provided by the UCI Machine Learning Reposi-
tory in the University of California Irvine, School of Information and
Computer Science.

Code Availability The analysis code used in this study is available in
https://github.com/kterashi/QML_HEP.

Compliance with Ethical Standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long

as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. HEP ML Community. A Living review of machine learning for
particle physics. https ://iml-wg.githu b.io/HEPML -Livin gRevi ew/

 2. Apollinari G, Béjar Alonso I, Brüning O, Fessia P, Lamont M,
Rossi L, Tavian L (2017) High-luminosity large hadron collider
(HL-LHC). CERN Yellow Rep Monogr 4:1–516. https ://doi.
org/10.23731 /CYRM-2017-004

 3. Evans L, Bryant P (2008) LHC machine. JINST 3:S08001. https
://doi.org/10.1088/1748-0221/3/08/S0800 1

 4. Mott A, Job J, Vlimant JR, Lidar D, Spiropulu M (2017) Solving a
Higgs optimization problem with quantum annealing for machine
learning. Nature 550(7676):375–379. https ://doi.org/10.1038/
natur e2404 7

 5. Zlokapa A, Mott A, Job J, Vlimant J-R, Lidar D, Spiropulu M
(2019) Quantum adiabatic machine learning with zooming. http://
arXiv .org/abs/1908.04480

 6. Shapoval I, Calafiura P (2019) Quantum associative memory in
HEP track pattern recognition. EPJ Web Conf 214:01012. https ://
doi.org/10.1051/epjco nf/20192 14010 12

 7. Bapst F, Bhimji W, Calafiura P, Gray H, Lavrijsen W, Linder
L (2019) A pattern recognition algorithm for quantum anneal-
ers. Comput Softw Big Sci 4:1. https ://doi.org/10.1007/s4178
1-019-0032-5

 8. Zlokapa A, Anand A, Vlimant J-R, Duarte JM, Job J, Lidar D,
Spiropulu M (2019) Charged particle tracking with quantum
annealing-inspired optimization. arXiv :1908.04475

 9. Tüysüz C, Carminati F, Demirköz B, Dobos D, Fracas F, Novotny
K, Potamianos K, Vallecorsa S, Vlimant JR (2020) Particle track
reconstruction with quantum algorithms. EPJ Web Conf 245:9013.
https ://doi.org/10.1051/epjco nf/20202 45090 13

 10. Das S, Wildridge AJ, Vaidya SB, Jung A (2019) Track cluster-
ing with a quantum annealer for primary vertex reconstruction at
hadron colliders. arXiv :1903.08879

 11. Wei AY, Naik P, Harrow AW, Thaler J (2020) Quantum algo-
rithms for jet clustering. Phys Rev D 101(9):094015. https ://doi.
org/10.1103/PhysR evD.101.09401 5

 12. Provasoli D,Nachman B, Bauer C, de Jong WA (2020) A quan-
tum algorithm to efficiently sample from interfering binary trees.
Quantum Sci Technol 5(3):35004. https ://doi.org/10.1088/2058-
9565/ab835 9

 13. Bauer CW, De Jong WA, Nachman B, Provasoli D (2019) A
quantum algorithm for high energy physics simulations. arXiv
:1904.03196

 14. Cormier K, Di Sipio R, Wittek P (2019) Unfolding measurement
distributions via quantum annealing. JHEP 11:128. https ://doi.
org/10.1007/JHEP1 1(2019)128

 15. Bauer CW, De Jong WA, Nachman B, Urbanek M (2020) Unfold-
ing quantum computer readout noise. npj Quantum Inf 6:84. https
://doi.org/10.1038/s4153 4-020-00309 -7

 16. Preskill J (2018) Quantum computing in the NISQ era and beyond.
Quantum 2:79. https ://doi.org/10.22331 /q-2018-08-06-79

http://creativecommons.org/licenses/by/4.0/
https://iml-wg.github.io/HEPML-LivingReview/
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.23731/CYRM-2017-004
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1088/1748-0221/3/08/S08001
https://doi.org/10.1038/nature24047
https://doi.org/10.1038/nature24047
http://arXiv.org/abs/1908.04480
http://arXiv.org/abs/1908.04480
https://doi.org/10.1051/epjconf/201921401012
https://doi.org/10.1051/epjconf/201921401012
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1007/s41781-019-0032-5
https://arXiv.org/abs/1908.04475
https://doi.org/10.1051/epjconf/202024509013
https://arXiv.org/abs/1903.08879
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1088/2058-9565/ab8359
https://doi.org/10.1088/2058-9565/ab8359
https://arXiv.org/abs/1904.03196
https://arXiv.org/abs/1904.03196
https://doi.org/10.1007/JHEP11(2019)128
https://doi.org/10.1007/JHEP11(2019)128
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.1038/s41534-020-00309-7
https://doi.org/10.22331/q-2018-08-06-79

Computing and Software for Big Science (2021) 5:2

1 3

Page 11 of 11 2

 17. Johnson MW, Amin MHS, Gildert S, Lanting T, Hamze F, Dick-
son N, Harris R, Berkley AJ, Johansson J, Bunyk P, Chapple EM,
Enderud C, Hilton JP, Karimi K, Ladizinsky E, Ladizinsky N, Oh
T, Perminov I, Rich C, Thom MC, Tolkacheva E, Truncik CJS,
Uchaikin S, Wang J, Wilson B, Rose G (2011) Quantum annealing
with manufactured spins. Nature 473(7346):194–198. https ://doi.
org/10.1038/natur e1001 2

 18. Peruzzo A, McClean J, Shadbolt P, Yung M-H, Zhou X-Q, Love
PJ, Aspuru-Guzik A, O’Brien JL (2014) A variational eigenvalue
solver on a photonic quantum processor. Nat Commun. https ://doi.
org/10.1038/ncomm s5213

 19. Mitarai K, Negoro M, Kitagawa M, Fujii K (2018) Quantum
circuit learning. Phys Rev A. https ://doi.org/10.1103/physr
eva.98.03230 9

 20. Havlícek V, Córcoles AD, Temme K, Harrow AW, Kandala A,
Chow JM, Gambetta JM (2019) Supervised learning with quan-
tum-enhanced feature spaces. Nature 567:209–212. https ://doi.
org/10.1038/s4158 6-019-0980-2

 21. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Gri-
sel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderp-
las J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in Python. J Mach Learn
Res 12:2825–2830

 22. Speckmayer P, Höcker A, Stelzer J, Voss H (2010) The toolkit
for multivariate data analysis, TMVA 4. J Phys Conf Ser
219(3):032057. https ://doi.org/10.1088/1742-6596/219/3/03205 7

 23. IBM Q Network. https ://www.ibm.com/quant um-compu ting/
 24. Dua D, Graff C (2017) UCI machine learning repository. http://

archi ve.ics.uci.edu/ml
 25. Baldi P, Sadowski P, Whiteson D (2014) Searching for exotic

particles in high-energy physics with deep learning. Nat Commun
5:4308. https ://doi.org/10.1038/ncomm s5308

 26. Qulacs. http://qulac s.org/index .html
 27. Abraham H, Akhalwaya IY, Aleksandrowicz G, Alexander T,

Alexandrowics G, Arbel E, Asfaw A, Azaustre C, Aziz N, Bark-
outsos P, Barron G, Bello L, Ben-Haim Y, Bevenius D, Bishop
LS, Bosch S, Bucher D, Cabrera F, Calpin P, Capelluto L, Car-
ballo J, Carrascal G, Chen A, Chen CF, Chen R, Chow JM, Claus
C, Clauss C, Cross AJ, Cross AW, Cross S, Cruz-Benito J, Cryoris
C, Córcoles-Gonzales AD, Dague S, Dartiailh M, Davide AR,
Ding D, Drechsler E, Dumitrescu E, Dumon K, Duran I, Eastman

E, Eendebak P, Egger D, Everitt M, Fernández PM, Fernández
PM, Ferrera AH, Frisch A, Fuhrer A, George M, Gould I, Gacon
J, Gadi Gago BG, Gambetta JM, Garcia L, Garion S, Gomez-
Mosquera J, de la Puente González S, Greenberg D, Grinko D,
Guan W, Gunnels JA, Haide I, Hamamura I, Havlicek V, Hellm-
ers J, Herok Ł, Hillmich S, Horii H, Howington C, Hu S, Hu W,
Imai H, Imamichi T, Ishizaki K, Iten R, Itoko T, Javadi-Abhari
A, Jessica JK, Kanazawa N, Karazeev A, Kassebaum P, Kovy-
rshin A, Krishnan V, Krsulich K, Kus G, LaRose R, Lambert R,
Latone J, Lawrence S, Liu D, Liu P, Mac PBZ, Maeng Y, Maly-
shev A, Marecek J, Marques M, Mathews D, Matsuo A, McClure
DT, McGarry C, McKay D, Meesala S, Mezzacapo A, Midha R,
Minev Z, Mooring MD, Morales R, Moran N, Murali P, Müggen-
burg J, Nadlinger D, Nannicini G, Nation P, Naveh Y, Niroula
P, Norlen H, O’Riordan LJ, Ogunbayo O, Ollitrault P, Oud S,
Padilha D, Paik H, Perriello S, Phan A, Pistoia M, Pozas-iKer-
stjens A, Prutyanov V, Puzzuoli D, Pérez J, Raymond R, Redondo
RMC, Reuter M, Rodríguez DM, Ryu M, Sandberg M, Sathaye
N, Schmitt B, Schnabel C, Scholten TL, Schoute E, Sertage IF,
Shammah N, Shi Y, Silva A, Siraichi Y, Sitdikov I, Sivarajah S,
Smolin JA, Soeken M, Steenken D, Stypulkoski M, Takahashi H,
Taylor C, Taylour P, Thomas S, Tillet M, Tod M, de la Torre E,
Trabing K, Treinish M, Turner W, Vaknin Y, Valcarce CR, Var-
chon F, Vogt-Lee D, Vuillot C, Weaver J, Wieczorek R, Wildstrom
JA, Wille R, Winston E, Woehr JJ, Woerner S, Woo R, Wood
CJ, Wood R, Wood S, Wootton J, Yeralin D, Yu J, Zachow C,
Zdanski L, Zoufal C (2019) Qiskit: an open-source framework for
quantum computing. https ://githu b.com/Qiski t/qiski t/blob/maste
r/Qiski t.bib. https ://doi.org/10.5281/zenod o.25621 10

 28. IBM Quantum team (2020). https ://quant um-compu ting.ibm.com/
docs/cloud /backe nds/syste ms/

 29. IBM Quantum team (2020). https ://quant um-compu ting.ibm.com/
docs/cloud /backe nds/syste ms/

 30. IBM Q system configuration maps. https ://www.ibm.com/blogs /
resea rch/2019/09/quant um-compu tatio n-cente r/

 31. Lloyd S, Schuld M, Ijaz A, Izaac JA, Killoran N (2020) Quantum
embeddings for machine learning. arXiv :2001.03622

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1103/physreva.98.032309
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1088/1742-6596/219/3/032057
https://www.ibm.com/quantum-computing/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1038/ncomms5308
http://qulacs.org/index.html
https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib
https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib
https://doi.org/10.5281/zenodo.2562110
https://quantum-computing.ibm.com/docs/cloud/backends/systems/
https://quantum-computing.ibm.com/docs/cloud/backends/systems/
https://quantum-computing.ibm.com/docs/cloud/backends/systems/
https://quantum-computing.ibm.com/docs/cloud/backends/systems/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
https://arXiv.org/abs/2001.03622

	Event Classification with Quantum Machine Learning in High-Energy Physics
	Abstract
	Introduction
	Algorithms
	Variational Quantum Approaches
	Quantum Circuit Learning
	Variational Quantum Classification

	Classical Approaches

	Experimental Setup
	Dataset
	Simulator
	Quantum Computer

	Results
	Qulacs Simulator
	Quantum Computer and QASM Simulator

	Discussion
	Performance with Different QCL Models
	Performance with Different VQC Models
	Comparison with DNN Model with Less Number of Parameters
	CPUMemory Usages for QCL Implementation

	Conclusion
	Acknowledgements
	References

