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Abstract
We present studies of quantum algorithms exploiting machine learning to classify events of interest from background events, 
one of the most representative machine learning applications in high-energy physics. We focus on variational quantum 
approach to learn the properties of input data and evaluate the performance of the event classification using both simula-
tors and quantum computing devices. Comparison of the performance with standard multi-variate classification techniques 
based on a boosted-decision tree and a deep neural network using classical computers shows that the quantum algorithm 
has comparable performance with the standard techniques at the considered ranges of the number of input variables and 
the size of training samples. The variational quantum algorithm is tested with quantum computers, demonstrating that the 
discrimination of interesting events from background is feasible. Characteristic behaviors observed during a learning process 
using quantum circuits with extended gate structures are discussed, as well as the implications of the current performance 
to the application in high-energy physics experiments.

Keywords Quantum computing · Machine learning · HEP data analysis · Classification

Introduction

The field of particle physics has been recently driven by 
large experiments to collect and analyze data produced in 
particle collisions occurred using high-energy accelerators. 
In high-energy physics (HEP) experiments, particles cre-
ated by collisions are observed by layers of high-precision 
detectors surrounding collision points, producing a large 
amount of data. The large data volume has motivated the 
use of machine learning (ML) techniques in many aspects 
of experiments to improve their performances (see, e.g., [1] 
for a living review of ML techniques to particle physics). 
In addition, computational resources are expected to be 
reduced for specific tasks by adopting relatively new tech-
niques such as ML. This will continue over next decades; 
for example, a next-generation proton–proton collider, called 
high-luminosity large hadron collider (HL-LHC) [2, 3], at 
CERN1 is expected to deliver a few exabytes of data every 

year and requires very large computing resources for the data 
processing. Quantum computing (QC), on the other hand, 
has been evolving rapidly over the past years, with a prom-
ise of a significant speed-up or reduction of computational 
resources in certain tasks. Early attempts to use QC for HEP 
have been made, e.g., on data analysis [4, 5], identification 
of charged particle trajectories [6–9], reconstruction of par-
ticle collision points [10] and particle spray called jets [11], 
as well as the simulation of event generation called parton 
shower [12, 13]. The techniques developed in HEP are also 
adapted to QC, e.g., the unfolding techniques for physics 
measurement are applied to QC in Refs. [14, 15]. Among 
these attempts, the quantum machine learning (QML) is 
considered as one of the QC algorithms that could bring 
quantum advantages over classical methods, as discussed in 
the literature, e.g., [16].

Most frequently used ML technique in HEP data analysis 
is the discrimination of events of interest, e.g., signal events 
originating from new physics beyond the Standard Model 
of particle physics, from background events. In this paper, 
we have investigated the application of QML techniques to 
the task of the event classification in HEP data analysis. To 
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our knowledge, the first attempt to utilize QC for HEP data 
analysis is performed in Ref. [4] for the classification of the 
Higgs boson using quantum annealing [17].

We focus on QML algorithms developed for gate-based 
quantum computer, in particular the algorithms based on 
variational quantum circuit [18]. In the variational circuit 
approach, the classical input data are encoded into quantum 
states and a quantum computer is used to obtain and meas-
ure the quantum states which vary with tunable parameters. 
Exploiting a complex Hilbert space that grows exponentially 
with the number of “quantum bits” (or qubits) in quantum 
computer, the representational ability of the QML is far 
superior to classical ML that grows only linearly with the 
number of classical bits. This motivates the application of 
ML techniques to quantum computer, which could lead to 
an advantage over the classical approach. The optimization 
of the parameters is performed using classical computer; 
therefore, the variational method is considered to be suit-
able for the present quantum computer, which has difficulty 
in processing deep quantum circuits due to limited quantum 
coherence. Practically, actual performance of the variational 
quantum algorithm depends on the implementation of the 
algorithm and the properties of the QC device. The primary 
aim of this paper is to demonstrate the feasibility of ML 
for the event classification in HEP data analysis using gate-
based quantum computer.

The variational quantum algorithms are described in the 
next section, followed by the classical approaches that are 
used for the comparison. The subsequent section discusses 
the experimental setup used in the study, including the 
dataset, software simulator and quantum computer. Then 
the results of the experiments are discussed, followed by 
discussions on several observations about the performance 
of the quantum algorithms. We conclude the studies in the 
final section.

Algorithms

Variational Quantum Approaches

In this study, we consider an approach based on variational 
quantum circuit with tunable parameters [18]. The quantum 
circuit used in this algorithm is constructed, as shown in 
Fig. 1, using three components: (1) quantum gates to encode 
classical input data x into quantum states (denoted as Uin(x) ), 
(2) quantum gates to produce output states used for super-
vised learning (denoted as U(�) ) and (3) measurement gates 
to obtain output values from the circuit that are subsequently 
compared with the corresponding input labels y . In this 
study, the measurement is performed 1024 times on each 
event with the Pauli-Z operators and the average value of the 
measurements is used for improving the statistical accuracy. 

For the classification of events into two categories, the first 
two qubits are typically measured. The U(�) gates used in 
(2) are parameterized such that they are optimized to model 
input training data by iterating the computational processes 
of (1)–(3) by Niter times and tuning the parameters � . The 
parameter tuning is performed using a classical computer 
by minimizing a cost function, which is defined such that 
a difference between the input labels y and the measured 
values ⟨Z⟩ can be quantified. The optimized U(�) circuit with 
the tuned parameters is used, with the same Uin(x) gates, 
to classify unseen data for testing. The Uin(x) and U(�) are 
often built using a same set of quantum gates with different 
parameters multiple times to enhance the representational 
ability of the data. The numbers of the repetition used for the 
Uin(x) and U(�) are denoted by Ndepth

in
 and Ndepth

var  , respectively.
In this study, we use two implementations of the vari-

ational quantum algorithms, called quantum circuit learn-
ing (QCL)  [19] and variational quantum classification 
(VQC) [20]. The QCL is used for testing the performance 
of the variational quantum algorithm on simulator. The VQC 
is used for testing the algorithm on both real quantum com-
puter and simulator with small samples.

Quantum Circuit Learning

A QCL circuit used in this study for the 3-variable classifica-
tion is shown in Fig. 2. The Uin(x) in QCL is characterized 
by the series of single-qubit rotation gates RY and RZ [19]. 
The angles of the rotation gates are obtained from the input 
data x to be sin−1(x) and cos−1(x2) , respectively. The input 
data are needed to be normalized within the range [ −1 , 1] 
by scaling linearly using the maximum and minimum val-
ues of the input variables. The normalization is performed 
separately for the training and testing samples to avoid data 

Fig. 1  Representative variational quantum circuit used for the event 
classification in this study. {x, y} is a set of pairs composed of an 
input data x and an input label y (desired output value). ⟨Z⟩ is an out-
put from the quantum circuit. The components of the circuit and their 
roles are explained in the text
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beyond the [ −1 , 1] range. In this case, the classification 
performance is slightly suboptimal for the testing sample. 
The effect is, however, checked to be small by comparing 
the performance with the case where the testing sample is 
normalized with the scaling derived from the training sam-
ple and clipped to [ −1 , 1]. The U(�) is constructed using a 
time-evolution gate, denoted as e−iHt , with the Hamiltonian 
H of an Ising model with random coefficients (for creat-
ing entanglement between qubits) and the series of RX , RZ 
and RX gates with angles as parameters. The nominal Ndepth

var  
value is set to 3 after optimization studies. This results in 27 
parameters in total for the 3-variable case. The structure for 
the 5- and 7-variable circuits is the same as the 3-variable 
case, leading to the total parameters of 45 and 63, respec-
tively. The measurement is performed on the first two qubits 
using the Pauli-Z operators, and the outcome of the measure-
ment is fed into the cost function via softmax. The cost func-
tion is defined using a cross-entropy function in scikit-learn 
package [21], and the minimization of the cost function is 
performed using COBYLA. See [19] for more details about 
the implementation.

Variational Quantum Classification

Figure 3 shows a VQC circuit for the 3-variable classifica-
tion used in this study. The Uin(x) consists of a set of Had-
amard gates and rotation gates with angles from the input 
data x (the latter is represented as U�(x) in the figure). The 
U�(x) is composed of single-qubit rotation gates of the form 
U�{k}

(x) = exp (i�{k}(x)Zk) , a diagonal phase gate with the 
linear function of �{k}(x) = xk . This is identical to the one 
used in Ref. [20] as the single-qubit gate (see Eq. (32) of the 
supplementary information of Ref. [20]), and is referred to 
as the“first-order expansion” (FOE). The U�(x) is not 
repeated in this study unless otherwise stated; thus, 
N

depth

in
= 1 . The U(�) part of the circuit is also taken from that 

in [20] but simplified by not repeating a set of entangling 
gate ( Uent ) and single-qubit rotation gates RY and RZ (sur-
rounded by the dashed box in Fig. 3). The Uent is imple-
mented using the Hadamard and CNOT gates, as in Fig. 3. 
The total number of � parameters is 12 (20, 28) for the 3 (5, 
7)-variable classification. The measurement is performed on 
all the qubits using the Pauli Z operators, and the measured 
outcomes are fed into the cost function. The cost function 
for the VQC algorithm is a cross-entropy function and the 
minimization is performed using COBYLA as well.

Classical Approaches

The ML application to the classification of events has been 
widely attempted in HEP data analyses. Among others, a 
boosted decision tree (BDT) in the TMVA framework [22] 
is one of the most commonly used algorithms. A neural net-
work (NN) is another class of multi-variate analysis meth-
ods, and an algorithm with a deep neural network (DNN) has 
been proven to be powerful for modelling complex multi-
dimensional problems. We use BDT and DNN as benchmark 
tools for comparison with the performance of the variational 
quantum algorithms.

In this study, we use the TMVA package 4.2.1 for the 
BDT and the Keras 2.1.6 with TensorFlow 1.8.0 backend 
for the DNN. The BDT and DNN parameters used are 
summarized in Table 1. The maximum depth of the deci-
sion tree (MaxDepth) and the number of trees in the for-
est (NTrees) vary with the number of events used in the 
training ( N train

event
 ) to avoid over-training. The DNN model is a 

fully connected feed-forward network composed of 2–6 hid-
den layers with 16–256 nodes each. The numbers of hidden 
layers and nodes per layer are varied according to N train

event
 to 

avoid over-training.

Fig. 2  Uin(x) and U(�) circuits used in this study for the QCL algo-
rithm

Fig. 3  Uin(x) and U(�) circuits used in this study for the VQC algo-
rithm
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Experimental Setup

Our experimental test of the variational quantum algorithms 
is performed using both simulators of quantum computers 
and real quantum computers available via the IBM Q Net-
work [23]. As a benchmark scenario for the HEP data analy-
sis, we consider a problem of discriminating events with 
supersymmetry (SUSY) particles from the most representa-
tive background events.

Dataset

We use the “SUSY Data Set” available in the UC Irvine 
Machine Learning Repository [24], which was prepared 
for studies of Ref. [25]. The signal process, labelled true, 
targets a chargino-pair production via a Higgs boson. Each 
chargino decays into a neutralino that escapes detection 

and a W-boson that subsequently decays into a charged 
lepton and a neutrino, resulting in a final state with two 
charged leptons and a missing transverse momentum. The 
background process, labelled false, is a W-boson pair pro-
duction (WW) with each W-boson decaying into a charged 
lepton and a neutrino. Therefore, both the signal and back-
ground processes have the same final state. Monte Carlo 
simulation is used to produce events of these processes as 
described in [25].

In our main studies, a small fraction of the data is used 
because the process of the full data (5 million events) with 
the quantum algorithms requires significant computing 
resources. For the comparison of the quantum and classi-
cal MLs, five sets of data containing 100, 500, 1000, 5000 
and 10,000 events are used for training and other five sets 
of data with the same number of events for testing. For the 
classical MLs, additional four sets of data containing 50,000, 
100,000, 200,000 and 500,000 events are used to study the 
dependence on the sample size.

The dataset contains 18 variables characterizing the 
properties of the SUSY signal and WW background events, 
ranging from low-level variables such as lepton transverse 
momenta to high-level variables such as those reflecting 
the kinematics of W-bosons and/or charginos (detailed in 
[25]). Figure 4 shows the normalized distributions of the 
18 variables for the signal and background events. Among 
those, the following 3, 5 and 7 variables, which are quoted 
as Nvar = 3 , 5 and 7 later, are considered in the main study:

3 variables: plep1
T

 , plep2
T

 and Emiss
T

,
5 variables: 3 variables above, MT

R
 , MR

Δ
,

7 variables: 5 variables above, �lep1 , �lep2.

The choice of these variables is made as follows: first, the 
combination of three variables is determined by testing dif-
ferent combinations of the variables using the DNN algo-
rithm and taking the one with the highest AUC (area under 
ROC curve) value. Starting with the selected variables of 
Nvar = 3 , more variables are sequentially added and deter-
mined in the same way for Nvar = 5 and 7. In addition, all 
the 18 variables are used for evaluating the best performance 
which the classical MLs can reach (“Qulacs Simulator”).

Simulator

We use quantum circuit simulators to evaluate the per-
formance of the quantum algorithms. The QCL circuit is 
implemented using Qulacs 0.1.8 [26], a fast quantum cir-
cuit simulator implemented in C++, with Python 3.6.5 and 
gcc 7.3.0, and the performance is evaluated on cloud Linux 
servers managed by OpenStack at CERN. The Qulacs sup-
ports the use of GPU, but it is not exploited in this study. 

Table 1  Parameter settings for the BDT and DNN used in this study

The definitions of the BDT parameters are documented in Ref. [22]

BDT parameter Value

BoostType Grad
NTrees 10 ( N train

event
= 0.1K),

100 ( 0.5K ≤ N
train
event

≤ 10K),
1000 ( N train

event
≥ 50K)

MaxDepth 1 ( N train
event

≤ 1K),
2 ( 5K ≤ N

train
event

≤ 100K),
3 ( N train

event
≥ 200K)

nCuts 20
MinimumNodeSize 2.5%
UseBaggedBoost True
BaggedSampleFraction 0.5

DNN parameter Value

Layer type Dense
Number of hidden layers 2 ( N train

event
= 0.1K or 1K),

3 ( N train
event

= 0.5K),
4 ( 5K ≤ N

train
event

≤ 100K),
6 ( N train

event
≥ 200K)

Number of nodes per hidden layer 16 ( 0.1K ≤ N
train
event

≤ 0.5K),
64 ( 1K ≤ N

train
event

≤ 10K),
128 ( 50K ≤ N

train
event

≤ 100K),
256 ( N train

event
≥ 200K)

Activation function Rectified linear unit
Optimizer Adam
Learning rate 0.001
Batch size None ( N train

event
≤ 10K),

2048 ( N train
event

≥ 50K)
Batch normalization No
Number of epochs 100 with early stopping
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The VQC circuit is implemented using Aqua 0.6.1 in the 
Qiskit 0.14.0 [27], a quantum computing software devel-
opment framework (Qiskit Aqua framework). The VQC 
performance is evaluated using a QASM simulator on a 
local machine as well as real quantum computer explained 
in the next section. No wall-time comparison is made 
between the simulators in this study.

The Qulacs simulator has capability of executing the 
variational quantum algorithm with more variables or 
more data events than the QASM simulator. This allows 
us to evaluate the performance of the quantum algorithm 
in more realistic settings.

Quantum Computer

We use the 20-qubit IBM Q Network quantum computers, 
called Johannesburg [28] and Boeblingen [29], for evalu-
ating the VQC performance. The quantum computers are 
accessed using the QuantumInstance class in the Qiskit 
Aqua framework. The Uin(x) part of the VQC circuit (Fig. 3) 
is created separately for each event because the U�(x) gates 
depend on the input data x . For the training and testing, we 
use 40 events each, composed of 20 signal and 20 back-
ground events. The � parameters are determined by iterating 

the training process as explained in “Variational quantum 
approaches”. The Niter is set to 100 unless otherwise stated.

Results

Qulacs Simulator

First, the classification performance of the QCL algorithm 
evaluated using the Qulacs simulator is compared with those 
of the BDT and DNN. Due to a significant increase of the 
computational resources with Nvar for the QCL (discussed in 
“CPU/memory usages for QCL implementation”), the Nvar 
is considered only up to 7.

Figure 5 shows ROC curves in the testing for the three 
algorithms with Nvar = 7 and N train

event
= 10,000 , and Fig. 6 

shows the comparisons of the AUC values as a function of 
N train
event

 for Nvar = 3 , 5 and 7. For each algorithm, a single AUC 
value is obtained from a test sample after each training, and 
the calculation is repeated 100 (30) times at N train

event
≤ 10,000 

( 50,000 ≤ N train
event

≤ 500,000 ). The center and the width of 
each curve in Fig. 5 correspond to the average value and the 
standard deviation of the true-/false-positive rates obtained 
from the repeated calculations over the training and test 

Fig. 4  Normalized distributions of input variables for SUSY signal 
(solid histograms) and background (dashed histograms). The first 
nine variables up to Emiss

T, rel
 are low-level features and the last nine are 

high-level ones. The main variables used in the study are highlighted 
in grey on the background while all the variables are considered for 
the DNN and BDT, as discussed in the text
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samples. Shown in Fig. 6 is the average of the resulting 
AUC values and the standard deviations of the average. As 
expected, it is apparent from the BDT and DNN curves that 
the performance of these two algorithms improves rapidly 
with increasing N train

event
 and then flattens out. The BDT works 

well over the entire N train
event

 range while the DNN performance 
appears to improve faster at very small N train

event
 and exceed 

BDT at N train
event

 beyond ∼ 1000 . In the case of Nvar = 7 and 
N train
event

= 500,000 , the AUC values are 0.8729 ± 0.0003 for 
the DNN and 0.8696 ± 0.0006 for the BDT. When using all 
the 18 variables with 2,000,000 events for the training and 
testing each, the average AUC value from only five trials 
is 0.8772 ± 0.0004 ( 0.8750 ± 0.0004 ) for the DNN (BDT).

The performance of the QCL algorithm is character-
ized by the relatively flat AUC values regardless of N train

event
 . 

Increasing the Nvar appears to degrade the performance if 
the N train

event
 is fixed, and the same behavior is also seen for the 

DNN with N train
event

≤ 500 (not clearly visible for the BDT). 
Further studies show that the QCL performance of the flat 
AUC value and the degradation with increasing Nvar is 
related to the choice of the variables: the Nvar = 3 variables 
used have sufficient information for the QCL algorithm to 
discriminate the signal from background, and no positive 
impact is seen on the performance by adding more variables 
or more events. However, it is seen that the performance 
improves by adding them if different combinations of the 
variables are selected. The DNN algorithm overcomes the 
degradation and eventually improves the performance with 
increasing Nvar by using more data. Investigating how the 
QCL algorithm behaves with more data is a future subject. 
Nevertheless, for the Nvar and N train

event
 ( ≤ 10,000) ranges con-

sidered all the three algorithms have a comparable discrimi-
nating power with the AUC values of 0.80–0.85.

Quantum Computer and QASM Simulator

The VQC algorithm with Nvar = 3 has been tested on the 
20-qubit IBM Q Network quantum computers and the QASM 
simulator, as explained in “Quantum computer”. The present 
study focuses only on the classification accuracy with the 
real quantum computer. Figure 7 shows the values of the 
cost function in the training as a function of Niter for both 
the quantum computer and the simulator. For each of the 
quantum computer and the simulator, the training is repeated 
five times over the same set of events and their cost-function 
values are shown. When running the algorithm on the quan-
tum computer, the first three hardware qubits [0, 1, 2] are 
used [30]. The figure shows that both the quantum computer 
and the simulator have reached the minimum values in the 
cost function after iterating about 50 times. However, the cost 
values for the quantum computer are constantly higher and 
more fluctuating after reaching the minimum values.

The ROC curves for the quantum computer and the sim-
ulator obtained from the training and testing samples are 
shown in Fig. 8, averaged over the five trials of the training 
or testing. The AUC values for the testing samples are con-
siderably worse than those for the training ones because of 
the small sample sizes. This has been checked by increas-
ing the N train

event
 from 40 to 70, 100, 200, 500 and 1000 for 

the simulator (Table 2). As seen in the table, the over-
training largely disappears as the sample sizes increase. 
Figure 9 shows the ROC curves from the simulator for the 
two sample sizes of N train

event
= 40 and 1000, confirming that 

the over-training is not significant for the latter.

Fig. 5  ROC curves obtained from the test sample for the BDT, DNN 
and QCL algorithms with Nvar = 7 and N train

event
= 10,000 . The error 

bands correspond to the standard deviations of the values obtained by 
repeating the calculation over the training and test samples

Fig. 6  Average AUC values (calculated from the test samples) as 
a function of the training sample size for the BDT, DNN and QCL 
algorithms with Nvar = 3 (circles), 5 (squares) and 7 (triangles). For 
the BDT and DNN, the average AUC values for the training sample 
of 2,000,000 events and 18 variables are also shown with the plus 
markers. The error bars represent the standard deviations of the aver-
age AUC values. The BDT and DNN points are slightly shifted hori-
zontally from the nominal N train

event
 values to avoid overlapping
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The AUC values are consistent between the quantum 
computer and the simulator within the standard deviation 
(Fig. 8), but the simulator results are considered to be sys-
tematically better because the input samples are identi-
cal. In Table 3, the VQC results are compared with the 
QCL being executed at the same condition, i.e., Nvar = 3 , 
N train
event

= 40 and Niter = 100 . The QCL results vary with the 
depth of the U(�) circuit (the nominal Ndepth

var  is 3), but they 
agree with the VQC results within relatively large uncer-
tainties. Summarized in Table 3 are the AUC values and 
their standard deviations in the training of the VQC and 
QCL algorithms.

Discussion

Performance with Different QCL Models

As seen in Fig. 6, the QCL performance stays approxi-
mately flat in N train

event
 and gets slightly worse when increas-

ing the Nvar at fixed N train
event

 . Since the computational 
resources needed to explore the QCL model with more 
variables ( Nvar >≈ 10 ) or larger sample sizes ( N train

event
> 10 

K) are beyond our capacity (“CPU/memory usages for 
QCL implementation”), understanding the behavior and 
the dependence on the Nvar or N train

event
 is a subject for future 

study.
To investigate a possibility that the QCL performance 

could be limited by insufficient flexibility of the circuit 
used (Fig. 2), alternative QCL models with the U(�) circuit 
of Ndepth

var = 5 or 7, instead of 3, are tested. This changes the 
AUC values by 1–2% at most for the N train

event
 of 100 or 1000 

events, which is negligible compared to the statistical fluc-
tuation. Another type of QCL circuit is also considered by 
modifying the Uin(x) to include 2-qubit gates for creating 
entanglement, as shown in Fig. 10 (as motivated by the 
second-order expansion in VQC; see “Performance with 
different VQC models”). It turns out that the QCL with 
the new Uin(x) does not increase the AUC values when the 
U(�) is fixed to the original model with Ndepth

var = 3 in Fig. 2. 
On the other hand, the new Uin(x) appears to improve the 
performance by 5–10% with respect to the original Uin(x) 
when Ndepth

var  is set to 1. This indicates that a more complex 
structure in the Uin(x) could help improve the performance 
when the U(�) is simplified. However, the performance of 
the new Uin(x) with Ndepth

var = 1 is still considerably worse 
than the nominal QCL model in Fig. 2.

Fig. 7  Evolution of the cost function value in the training of the VQC 
algorithm with Nvar = 3 and N train

event
= 40 . Shown are the cost function 

values observed in 5 training trials for quantum computer and QASM 
simulator

Fig. 8  ROC curves in the training and testing of the VQC algorithm 
with Nvar = 3 and N train

event
= 40 . Shown are the ROC curves (averaged 

over five trials in the training or testing) for quantum computer and 
QASM simulator. The size of the markers represents the standard 
deviation of the trials. The values in the legend give the average AUC 
values and the standard deviations

Table 2  AUC values in the testing and training for the VQC algo-
rithm running on the QASM simulator

The training condition is fixed to Nvar = 3 and Niter = 100 for all 
N

train
event

 cases. The uncertainties correspond to the standard deviations 
of the average AUC values over the trials

N
train
event

 ( = N
test
event

) Testing Training

40 0.555 ± 0.032 0.813 ± 0.012

70 0.716 ± 0.037 0.741 ± 0.022

100 0.708 ± 0.039 0.761 ± 0.025

200 0.812 ± 0.012 0.741 ± 0.014

500 0.779 ± 0.008 0.796 ± 0.007

1000 0.779 ± 0.008 0.789 ± 0.005
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Performance with Different VQC Models

The VQC circuit used in this study (Fig. 3) is simplified with 
respect to the one used in Ref. [20]. To examine whether 
more extended circuits could improve the performance, 
alternative VQC models are tested using the QASM simula-
tor. The first alternative model is the one in which the 
U�(x) in Fig. 3 (FOE) is replaced with the combination  
of single- and two-qubit gates of U�{k}

(x) = exp (i�{k}(x)Zk) 
and  U�{l,m}

(x) = exp (i�{l,m}(x)ZlZm) w i t h  �{l,m}(x) =

(� − x
l
)(� − x

m
) , as used in Ref. [20]. This type of U�(x) is 

referred to as the “second-order expansion” (SOE). The sec-
ond alternative model is the one with extended Uin(x) and 
U(�) gates by increasing the Ndepth

in
 and Ndepth

var  ; this model 

includes the combinations of Ndepth

in
 up to 2 and Ndepth

var  up to 

3, separately for the FOE and SOE in U�(x).
Testing these models using the QASM simulator shows 

that the AUC values stay almost constant (within at most 
2%) regardless of the Ndepth

in
 or Ndepth

var  if the U�(x) is fixed 
to either FOE or SOE. But, the performance improves by 
about 10% when changing the U�(x) from FOE to SOE at 
fixed Ndepth

in
 and Ndepth

var  . On the other hand, no improvement 
is observed when testing the SOE with a real quantum com-
puter. Moreover, the standard deviation of the AUC values 
becomes significantly larger for the SOE with quantum com-
puter. These could be qualitatively understood to be due to 
increased errors from hardware noise because the number 
of single- and two-qubit gate operations increases by 60% 
when switching from the FOE to SOE at Ndepth

in
= N

depth
var = 1 ; 

therefore, the VQC circuit with SOE suffers more from the 
gate errors.

Comparison with DNN Model with Less Number 
of Parameters

A characteristic difference between the QCL and DNN algo-
rithms is on the number of trainable parameters ( Npar ). As 
in “Variational quantum approaches”, the Npar is fixed to 
27 (45, 63) for the QCL with 3 (5, 7) variable case. For the 
DNN model in Table 1, the Npar varies with N train

event
 as given 

in Table 4. Typically the Npar of the DNN model is about 
6–13 times more than that of the QCL model at N train

event
= 100 , 

and the ratio increases to 75–165 (200–470) at N train
event

= 1000 
(10,000). Comparing the two algorithms with a similar num-
ber of trainable parameters could give more insight into the 
QCL performance and reveal a potential advantage of the var-
iational quantum approach over the classical method. A new 
DNN model is thus constructed to contain only one hidden 
layer with 5 (6, 7) nodes for 3 (5, 7) variable case, resulting 
in the Npar of 26 (43, 64). The rest of the model parameters is 
identical to that in Table 1. Shown in Fig. 11 is the compari-
son of the AUC values for the new DNN and QCL models at 
N train
event

≤ 10,000 . It is indicated from the figure that the QCL 
can learn more efficiently than the simple feed-forward net-
work with the similar number of parameters when the sample 
size is below 1000. Exploiting this feature in the application 
to HEP data analysis would be an interesting future subject.

CPU/Memory Usages for QCL Implementation

The QCL algorithm runs on the Qulacs simulator with cloud 
Linux servers, as described in “Simulator”. Under this con-
dition, we examine how the computational resources scale 
with the problem size. For the creation of input quantum 
states with Uin(x) , both CPU time and memory usage grow 
approximately linearly with Nvar or N train

event
 . The creation of 

Fig. 9  ROC curves in the training and testing of the VQC algorithm 
with N train

event
= 40 and 1000 for Nvar = 3 . Shown are the ROC curves 

(averaged over five trials in the training or testing) for QASM simula-
tor. The size of the markers or the band width represents the standard 
deviation of the trials. The values in the legend give the average AUC 
values and the standard deviations

Table 3  AUC values in the training for the VQC and QCL algorithms 
running on quantum computers and simulators

The QCL results are given for Ndepth
var = 1 and 3. The training condi-

tion is fixed to Nvar = 3 , N train
event

= 40 and Niter = 100 for both algo-
rithms. The uncertainties correspond to the standard deviations of the 
average AUC values over the trials

Device/condition AUC 

VQC Johannesburg 0.799 ± 0.020

Boeblingen 0.807 ± 0.010

QASM simulator 0.815 ± 0.015

QCL Qulacs simulator ( Ndepth
var = 1) 0.768 ± 0.082

Qulacs simulator ( Ndepth
var = 3) 0.833 ± 0.063
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the variational quantum states with U(�) shows an exponen-
tial increase in CPU time and memory usage with Nvar (i.e., 
number of qubits) up to Nvar = 12 , roughly a factor 8 (4) 
increase in CPU time (memory) by incrementing the Nvar by 
one. The overall CPU time is by far dominated by the mini-
mization process with COBYLA. It increases linearly with 
N train
event

 but grows exponentially with Nvar , making it imprac-
tical to run the algorithm a sufficient number of times for 
Nvar ∼ 10 or more. The memory usage stays constant over 
Nvar during the COBYLA minimization process.

Conclusion

In this paper, we present studies of quantum machine 
learning for the event classification, commonly used as the 
application of conventional machine learning techniques 

to high-energy physics. The studies focus on the applica-
tion of variational quantum algorithms using the imple-
mentations in QCL and VQC, and evaluate the perfor-
mance in terms of AUC values of the ROC curves. The 
QCL performance is compared with the standard classical 
multi-variate classification techniques based on the BDT 
and DNN, and the VQC performance is tested using the 
simulator and real quantum computers. The overall QCL 
performance is comparable to the standard techniques if 
the problem is restricted to Nvar ≤ 7 and N train

event
<∼ 10,000 . 

The QCL algorithm shows relatively flat AUC values in 

Fig. 10  Nominal and alternative 
Uin(x) circuits used in QCL to 
check impact on the perfor-
mance

Table 4  Number of trainable parameters used in the DNN model of 
Table 1

N
train
event

Npar

Nvar = 3 Nvar = 5 Nvar = 7

100 353 385 417
500 625 657 689
1000 4481 4609 4737
5000 12,801 12,929 13,057
10,000 12,801 12,929 13,057
50,000 50,117 50,433 50,689
100,000 50,117 50,433 50,689
200,000 330,241 330,753 331,265
500,000 330,241 330,753 331,265

Fig. 11  Average AUC values (calculated from the test samples) as a 
function of the training sample size up to N train

event
= 10,000 for the new 

DNN and QCL models with Nvar = 3 (circles), 5 (squares) and 7 (tri-
angles). The error bars represent the standard deviations of the aver-
age AUC values. The DNN points are slightly shifted horizontally 
from the nominal N train

event
 values to avoid overlapping
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N train
event

 , in contrast to the BDT and DNN algorithms, which 
show that the AUC values increase with increasing N train

event
 

in the considered N train
event

 range. This characteristic QCL 
behavior could be considered as a possible advantage over 
the classical method at small N train

event
 where the DNN perfor-

mance gets considerably worse if the number of trainable 
parameters of the DNN model is constrained to be similar 
to that of the QCL.

The VQC algorithm has been tested on quantum 
computers only for a small problem of N train

event
= 40 , but 

it shows that the algorithm does acquire the discrimina-
tion power. The VQC performances are similar on the 
simulator and real quantum computer within the measured 
accuracy. There is, however, an indication of increased 
errors due to hardware noise, that could prevent us from 
using an extended quantum circuit such as the SOE for 
the encoding of classical input data. The QCL and VQC 
algorithms show similar performance when they run on 
the simulators with the same conditions for the Nvar and 
N train
event

 values.
With a better control of the measurement and gate 

errors, it is expected that the performance of the vari-
ational quantum machine learning on quantum comput-
ers further improves, as demonstrated in Ref. [20] with 
the SOE and increased depth of the variational circuit. 
Another potentially promising approach, proposed in 
Ref. [31], is to train the encoding part of the variational 
algorithm to carry out a maximally separating embedding 
of classical input data into Hilbert space. This could pro-
vide a way to perform optimized measurements to distin-
guish different classes of data with a shallow quantum cir-
cuit, potentially reducing the impact from hardware errors 
on the variational part of the algorithm.
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