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The expected increase in simultaneous collisions creates a challenge for accurate particle track
reconstruction in High Luminosity LHC experiments. Similar challenges can be seen in non-HEP
trajectory reconstruction use-cases, where tracking and track evaluation algorithms are used. High
occupancy, track density, complexity and fast growth therefore exponentially increase the demand
of algorithms in terms of time, memory and computing resources. While traditionally Kalman
filter (or even simpler algorithms) are used, they are expected to scale worse than quadratic and
thus strongly increasing the total processing time. Graph Neural Networks (GNN) are currently
explored for HEP, but also non HEP trajectory reconstruction applications. Quantum Computers
with their feature of evaluating a very large number of states simultaneously are therefore good
candidates for such complex searches in large parameter and graph spaces. In this paper we
present our work on implementing a quantum-based graph tracking machine learning algorithm
to evaluate Traffic collision avoidance system (TCAS) probabilities of commercial flights.
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1. Introduction

With the start of the data taking period of the High-Luminosity LHC [1] and even with building
a potential Future Circular Collider, the amount of collisions and with it the amount of data is
expected to increase significantly. Current machine learning techniques are able to cope with the
existing data but are expected to outperform soon. Similar problems appear in the aviation industry
with the increased usage of drones and the mandatory use of ADS-B [2]. Novel techniques such as
quantum computing are considered as potential candidates to overcome these problems.
A collaboration has been formed between gluoNNet, CERN openlab, the Middle Technical East
University of Ankara as well as researchers from the University of Oxford and Caltech to explore
possible applications of quantum computing algorithms to particle track reconstruction problems
and reconstructing airplane routes due to striking similarities between them. One of these similari-
ties are the detector hit and the broadcasted information as both include time and position informa-
tion. Airplanes correspond to particles in this comparison and the event Id then corresponds to the
aircraft’s unique identifier. In this study, the track reconstruction of airplanes has the major aim of
understanding triggers leading to deviations of the flown path compared to the optimal route. In a
future step, this could then be applied for optimizing airport capacities, for understanding environ-
mental aspects as well as for improving predictions of potential collisions by the Traffic Collision
Avoidance System (TCAS). This system warns the aviator of a potential collision in a given area
and requests one aircraft to ascend, while the other is requested to descend. The area of interest is a
cylinder with a height of about one kilometre and a diameter about 55 kilometres. Then the actual
size changes depending on the aircraft’s height. The TCAS has become decisive for potential col-
lisions after two aircrafts collided due to an erroneous suggestion by an air traffic controller, while
the TCAS had given the correct advice.
For our study, we consider first the physics case and then we derive from that the implications for
the aviation case. Although the focus will be on the particle physics case, it still remains applica-
ble to the aviation case. In particle physics, particles collide and produce hits, which are signals
recorded by the detector. Algorithms then associate a hit to a particle, whereas other algorithms
that are expected to outperform reconstruct the particle’s trajectory. A dedicated challenge has been
initiated by CERN on Kaggle to develop new algorithms for the future based on a data set that is
now used as a set to benchmark existing code [3, 4].

2. The data sets

The Kaggle data set contains 10k events and is publicly available [3, 4]. One hundred events of the
available data set are used due to the long processing time in the order of one week of the quantum
computing code. This corresponds to 1% of the available data. Events covering the barrel region
of the detector have been selected due to the closeness to the origin of the collision point as well
as due to a reduction of the amount of data. Following Hep-TrkX [5], the cuts on pseudorapidity
η ∈ [−5,5], the angle φ of the transverse plane and beam direction z have been applied. The
precise values are shown in Tab.1. In addition, the transverse plane is divided into 8 slices. The
graph matrices are constructed by using Hep-TrkX’s pre-processing [5]. These matrices contain
the spatial information, which are then fed to the Quantum Graph Neural Net.
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Figure 1: Detector layout of the TrackML challenge. The barrel region corresponding to horizontal layers
in this drawing covers parts of the volume with the IDs 8, 13, and 17 has been taken into account [3, 4].

Parameter Selection
|pT | > 1GeV
∆φ < 0.0006
z0 < 100mm
η [−5,5]

Table 1: Selections applied to TrackML dataset for preprocessing.

3. Hybrid Graph Neural Networks

Figure 2: Structure of iterative application of the Quantum Node Network and Quantum Edge Network.

The Quantum Graph Neural Network (QGNN) is a hybrid version, i.e., consisting of classical
parts and quantum circuits. Its overall architecture is based on the work of the Hep-TrkX project
[5]. Their classical model uses an Input Network followed by an iterative application of an edge
network and a node network. The network pipeline is shown in Fig.2, in which the graphs are
depicted as black lines connecting dots and the Input Network is displayed in blue, followed by the
iterative application of the Edge and Node networks depicted in red and green. This architecture is
modified by implementing quantum circuits as an underlying model for edge and node networks,
which is why the terms quantum edge network and quantum node networks are used. The overall
network pipeline is encoded using Tensorflow [6] as well as Pennylane [7] connecting the quantum
circuits with the classical networks. In case of the quantum circuits, two shallow and low width
architectures have been chosen as they can be executed on Noisy Intermediate-Scale Quantum
devices. The first architecture of the quantum circuits has been a Tensor Tree network (TTN) and
the second architecture has been improved to a multi-scale entanglement renormalization ansatz
(MERA) [8] network.
Edge network and Node network serve different purposes, which are examined in the following.
The circuits are created for each network differently because they differ in the number of qubits.
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Figure 3: Quantum Node Network (left) and Quantum Edge Network (right) are composed of Tensor Tree
Networks (TTN). The underlying TTNs differ in the amount of qubits. 6 qubits are used to cover two sets
of three spatial coordinates corresponding to two edges. The hidden features correspond to classical neural
network layers. The obtained output of the Quantum Edge Network serves as input for the Quantum Node
Network. Numerical values are example values.

3.1 Edge Network

After having passed the input network that maps the dimension of the graph matrices to the di-
mension of the edges, the data are fed into the first Quantum Edge network, which is displayed on
the right hand side in Fig. 3. The edge network contains 8 qubits, in which two hits are taken into
account. Each spatial coordinate of one hit corresponds to one qubit and there is one extra qubit to
increase the size of the network’s hidden dimension. The additional qubit corresponds to hidden
layers in a classical neural network. Each qubit is rotated around an angle θ on the y axis using
Ry rotation gates. The data input corresponds to the angle and is therefore mapped to an interval
[0,π] due to the existence of a cosine function in the gate. Half of the cosine’s period is conserved
in order to avoid unwanted overlap.

3.2 Node network

The node network shown on the left hand side in Fig. 3 has a similar structure as the Edge network.
If the size of the hidden dimension is one in the node network, there are four more qubits than in
the edge network. In total, the information of three nodes are taken into account. Two of these
three nodes correspond to neighbouring nodes around a centred node.

4. Training and results

The training set contains 1400 subgraphs and has been validated by 200 randomly selected sub-
graphs. The order of the validation sets are shuffled, whereas the order in the validation set has
been kept. The edge probability is defined as average of the measurement outcomes. Afterwards,
the uncertainty is calculated based on the ground truth. Tensorflow’s ADAM optimiser [9] is used
as an optimiser with learning rates of 0.03 in case of the architecture displayed in orange in Fig. 4
and 0.005 in case of the new version, displayed in blue in Fig. 4. The architectures differ in the
amount of measurement. The new version takes only one measurement, contrary to the architecture
of the network that produces the orange band. The underlying model resulting in the blue curve
differs between the one that produces the orange curve by the fact that there is only one direct
measurement taken. Algorithms used for the gradient calculation require longer processing times
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Figure 4: Comparison between different architectures. The loss decreases, whereas the accuracy increases
in case of the new architecture with a learning rate of 0.005. Only a single measurement has been performed.
The investigation has been done for one single epoch.

for obtaining gradients of the quantum circuits, which requires reiterations of those circuits with
different parameters. Only simulations of quantum circuits have been used in this work due to the
limited access to real quantum hardware. Tests to train the network have been performed using
4 qubits and circuits 6, 11, 14 and 15 of [10] as well as with 4 qubit versions of the Tensor Tree
Network and MERA. These circuits have a high entanglement capability as well as not too many
trainable parameters. As a result, the learning rate is small using 5 epochs. This is, however, not
surprising as comparable classical graph neural networks suggest requiring at least 66 epochs for a
sufficient Node classification and 96 epochs for a graph classification [11].

5. Conclusions and outlook

This work is an extension of our prior work [12]. It has been shown that quantum computing mod-
els are an intriguing possibility for applications in both particle physics and industry. Although
these models are not yet competitive due to the limited access to real quantum computers, it might
offer a good alternative for the future.
Next steps will include an increased number of qubits as well as optimization methods. GPUs
decrease the processing time as well as working with parameterized quantum circuits.
It is now planned to deploy this to the aviation case. We already have started to look into the
ADS-B data set. ADS-B is a broadcasting system using satellites and has a world-wide coverage
[2]. Aircrafts broadcast their information to satellites, which then transmit the signal to ground
stations. This information contains the aircraft’s position in degrees of Longitude and Latitude in
the WGS-84 format, as well as the projected height to the earth’s ellipsoid and the aircraft’s unique
transponder identification number. Any further information is not mandatory for transmission and
therefore not always available [13]. The studied data set has a size of 500 GB and covers commer-
cial aircraft data of the CAT 21 for April 2019. It has been kindly provided by Aireon [14] and the
Irish Aviation Authority [15].
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