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PROJECT SPECIFICATION 

 

CERN openlab has recently started an investigation to design and implement a large-scale 
distributed platform to perform data analysis of medical and other personal protected data for 
research and clinical purposes, called CERN livinglab. The goal of CERN openlab is to investigate 
the technological challenges generated by such a platform and work with medical researchers, 
biologists and doctors to collect requirements and use cases and to validate the early prototypes of 
the platform. 

The CERN livinglab team is interested in evaluating state-of-the-art tools and technology and build a 
growing set of functionality, methods and best practices to be integrated in the platform. In this 
context we are proposing a project to work on the PhysioNet/Computing in Cardiology Challenge 
2019, whose focus is “Early Prediction of Sepsis from Clinical Data”. The developed deep learning 
model will be loaded on a laptop computer or tablet equipped with the Myriad USB key and able to 
provide rapid predictions of sepsis probability in clinical scenarios. 
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ABSTRACT 

 

Sepsis is a life-threatening condition where microbes present in the blood stream cause an 
unregulated immune response from the body which can result in tissue damage, multi-organ failure 
and eventually death. It affects 30 million people worldwide and causes 6 million deaths. Studies 
have indicated that every hour sepsis goes undetected, patient mortality increases 4-8%, thus early 
detection of the disease is necessary to decrease mortality rates and provide better patient 
outcomes.  

This project is derived from this year’s 2019 Computing in Cardiology Challenges, which focuses on 
the early detection of sepsis using machine learning algorithms. The two primary focuses of the 
project include (1) developing a model which can successfully detect sepsis early and (2) 
demonstrating the clinical viability of this deep learning model by implementing the model on Intel’s 
Neural Compute Stick 2 (Myriad X VPU processor) which is a portable USB device that can 
implement and deploy deep learning models. 

While developing the model, the data was preprocessed in the following ways: (1) linear interpolation 
was used to fill all missing values and values not collected were 0, (2) synthetic minority oversample 
technique (SMOT) was used to balance the data set, (3) patient file lengths were standardized to 
have only 3 and 17 hours of patient data, (4) all 40 parameters were used (although a variety of 
subsets were tested). Data preprocessing was done using MATLAB. 

The model was developed in python using Tensorflow and Keras. The model itself was a seven layer 
dense neural network (DNN) with Leaky Rectified Linear Unit (ReLU) activation functions for all 
hidden layers and a sigmoid activation function for the output layer. This was paired with binary cross 
entropy loss.  

The resulting model detected sepsis well, with a 76% sensitivity (correctly identified sepsis) and 80% 
specificity (correctly identified healthy patients). The model was successfully implemented on Intel’s 
Neural compute stick 2 (Myriad X VPU processor) with an average of 10ms processing time to 
determine whether the patient had sepsis, demonstrating clinical viability. Further testing including 
tuning hyperparameters to further increase sensitivity and specificity is currently being done.    
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1. Introduction 

a. Machine Learning in Healthcare 

Healthcare and medicine have historically remained independent of computing advances, only recently 
integrating paper records to patient electronic health records (EHRs); however, with the rise of 
computing power as well as the scalability of this computing power at low costs, large quantities of 
information found in medical health records (estimates of 1 trillion gigabytes in the United States alone),  
provides an opportunity for the use of computing, specifically machine learning and artificial intelligence, 
to process healthcare data for early disease detection, drug discovery and precision medicine.  

One promising area of research in machine learning in healthcare is its use in early detection of 
diseases. Early detection of diseases is critical as it increases treatment options for patients as well as 
decreases mortality rate to provide better patient outcomes. Scientists have continually sought ways to 
detect diseases early, usually through cellular pathology, biomarkers and genetic tests. Perhaps one of 
the most famous examples of early disease detection was the invention of the Pap smear, which 
examines the pathology of cells for cervical cancer detection. With this early detection and screening 
methods, mortality rate of cervical cancer dropped over 50% (Safaeian, & Solomon, 2009). Other well-
known early detection tests for diseases include those for breast cancer detection of BRCA1 and 
BRCA2 genes. These traditional methods of early detection utilize genetic screenings, biomarker 
detection or protein detection in bodily fluids; however, given the wealth of information found in 
electronic patient health records, using deep learning and AI on electronic patient health records could 
allow for early disease detection. Using deep learning early detection could improve patient outcomes 
and be applied to a broad range of diseases. 

Many recent studies have been using machine learning in healthcare and diagnostics. A recent study 
indicated that machine learning algorithms were able to detect Alzheimer’s six years earlier than doctors 
were able to (Ding et al., 2019). The complex and subtle changes in brain structure on imaging scans 
associated with early stages of a disease are often too subtle for doctors to analyze. However, the large 
computing power of machine learning allows for it to detect and process these changes, finding viable 
diagnosis earlier than doctors are able too. Other studies have also been able to detect cancerous 
tumors as well as analyze clinical radiographic images more accurately and faster than physicians are 
able to (Haenssle et al., 2018; Abramoff, 2018).  

Currently, the most successful machine learning algorithms for disease detection use image analysis of 
radiographical scans (PET, SPECT, CT, MRI etc.), which often use convolutional neural networks to 
analyze the images (Soffer et al., 2019). However, many diseases are not detectable via image scans 
and bloodwork analysis can take a while. Thus, it is necessary to utilize electronic patient health records 
(EHRs) to diagnosis diseases. EHRs contain a plethora of information including lab work, vital signs 
and demographic information which can be carefully processed and inputted into a deep learning 
algorithms for disease detection.  One such condition that cannot be detected from image analysis and 
requires bloodwork is sepsis.  

b. Sepsis 

Sepsis is a condition in which microorganisms enter the bloodstream and the body has an unregulated 
immune response to the presence of these microorganisms which can result in tissue damage, organ 
failure or death (Singer et al., 2016). In the US approximately 1.7 million people are estimated to develop 
sepsis with approximately 270,000 people dying from it yearly (CDC, 2016). It is estimated that 
approximately one in three deaths in US hospitals are associated with sepsis (CDC, 2016).  
Internationally, sepsis affects nearly 30 million people worldwide with 6 million deaths each year (WHO, 
2018). Furthermore, approximately 4.2 million infants are afflicted with sepsis (WHO, 2018). In addition 
to patient care, sepsis has large economic costs. In the US alone, sepsis costs US hospitals 
approximately 24 billion dollars per year (13% of US healthcare costs), more than any other disease; 
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the majority of those cases were patients who were not diagnosed with sepsis upon admission (Paoli 
et al., 2018).  

Furthermore, sepsis is a time sensitive disease and is extremely fast acting. It is estimated that for every 
hour sepsis goes undiagnosed the mortality rate increases 4-8% (Kumar et al., 2006; Seymour et al., 
2017). While clinicians have developed new guidelines for sepsis diagnosis to combat late detection, 
other methods for early detection and predication of sepsis could provide better treatment options.  The 
most common method of sepsis diagnosis defines a patient’s state of sepsis as a two point increase in 
their sequential organ failure assessment (SOFA) score (Singer et al., 2016). This methodology often 
results in delayed detection/treatment. Although new guidelines to detect sepsis have been outlined to 
decrease detection time, including quick sequential organ failure assessment (qSOFA) scores, earlier 
prediction of sepsis is still necessary to decrease patient mortality.  

Early detection of sepsis shows promise as the best way to decrease mortality of the disease. Using 
time series data sets of EHRs that contain vital signs, demographic information and lab work, machine 
learning algorithms have promise for early detection of sepsis.  

c. PhysioNet Computing in Cardiology Challenge 2019 

This year’s computing in cardiology challenge utilizes machine learning for the early prediction of sepsis 
using physiological time-series data from time of admission to the ICU. For this challenge, sepsis was 
defined according the Sepsis-3 guidelines which dictates a 2-point change in the patient’s sequential 
organ failure assessment and clinical suspicion of infection (ordering blood cultures or IV antibiotics). 
The goal of this challenge was to predict sepsis earlier than clinicians were able to detect it (Reyna et 
al., 2019). The data set for each patient contained 40 parameters including vital signs, laboratory results 
and demographic information with hourly updates to the information (missing data is in the set as not 
all values were collected/recorded every hour) (Reyna et al., 2019). This project will be based on this 
year’s 2019 Computing in Cardiology challenge (although slightly modified), and will focus on utilizing 
deep learning models for the early detection of sepsis. 

d. Intel’s Myriad X VPU and the Neural Compute Stick 2 

Using AI to predict diseases early is very important; however, it requires a practical method to implement 
within hospitals which includes speed, portability and low cost. Intel’s Neural compute stick 2, which has 
the Myriad X Vision Processing Unit (VPU) is a portable USB connection device which can implement 
and deploy deep learning algorithms. It’s portability, speed and low cost make it a practical device to 
implement deep learning models for early detection of diseases and its application will be further 
explored in this project.  

2. Project Goals 

This project is based on the Computing in Cardiology 2019 Challenge which focuses on the early prediction 
of sepsis using machine learning models. There are two primary goals for this project including the 
development of a neural network and practical implementation of that network for the early detection of 
sepsis.  

The first goal for this project is to develop a working deep learning model to predict sepsis earlier than 
clinicians are able too. This model should utilize the time series data provided by the 2019 Computing in 
Cardiology Challenge to predict sepsis with greater than 70% sensitivity (true positive) and specificity (true 
negative). Ideally the model should be able to predict sepsis with greater than 80% specificity and sensitivity 
for more practical clinical aided diagnostics. The model should also be able to predict sepsis more than 10 
hours before clinicians are able to.  
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Additionally, for this model appropriate parameters from the dataset should be selected. Furthermore, the 
model should be a dense neural network and not a long-short term memory network, as the neural compute 
stick does not have support for these models.  

The second goal of this project was to implement the model on Intel’s Neural Compute Stick 2 and measure 
its clinical viability by determining the speed at which the model could predict each patient’s case as well as 
cost of the device and implementation in the hospital.  

The first goal of this project, development of a neural network, has many parts including: (1) selecting 
parameters available, (2) examining the dataset (3) pre-processing the dataset and (4) developing a working 
model as well as tuning the hyperparameters of the model.  

3. Neural Network 

a. The Dataset 

The 2019 Computing in Cardiology PhysioNet Challenge, provided 2 publically available datasets, one 
for testing and one for validation, which each contained approximately 20,000 patient files. Each patient 
file consisted of 40 patient parameters listed in the tables below: 

Vital signs (columns 1-8) 

HR Heart rate (beats per minute) 

O2Sat Pulse oximetry (%) 

Temp Temperature (Deg C) 

SBP Systolic BP (mm Hg) 

MAP Mean arterial pressure (mm Hg) 

DBP Diastolic BP (mm Hg) 

Resp Respiration rate (breaths per minute) 

EtCO2 End tidal carbon dioxide (mm Hg) 

Laboratory values (columns 9-34) 

BaseExcess Measure of excess bicarbonate (mmol/L) 

HCO3 Bicarbonate (mmol/L) 

FiO2 Fraction of inspired oxygen (%) 

pH N/A 

PaCO2 Partial pressure of carbon dioxide from arterial blood (mm Hg) 

SaO2 Oxygen saturation from arterial blood (%) 

AST Aspartate transaminase (IU/L) 

BUN Blood urea nitrogen (mg/dL) 

Alkalinephos Alkaline phosphatase (IU/L) 

Calcium (mg/dL) 

Chloride (mmol/L) 
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Creatinine (mg/dL) 

Bilirubin_direct Bilirubin direct (mg/dL) 

Glucose Serum glucose (mg/dL) 

Lactate Lactic acid (mg/dL) 

Magnesium (mmol/dL) 

Phosphate (mg/dL) 

Potassium (mmol/L) 

Bilirubin_total Total bilirubin (mg/dL) 

TroponinI Troponin I (ng/mL) 

Hct Hematocrit (%) 

Hgb Hemoglobin (g/dL) 

PTT partial thromboplastin time (seconds) 

WBC Leukocyte count (count*10^3/µL) 

Fibrinogen (mg/dL) 

Platelets (count*10^3/µL) 

Demographics (columns 35-40) 

Age Years (100 for patients 90 or above) 

Gender Female (0) or Male (1) 

Unit1 Administrative identifier for ICU unit (MICU) 

Unit2 Administrative identifier for ICU unit (SICU) 

HospAdmTime Hours between hospital admit and ICU admit 

ICULOS ICU length-of-stay (hours since ICU admit) 

Furthermore, of the 20,000 patient files only about 5% were cases of sepsis, creating an imbalanced 
dataset. Additionally, while evaluating the parameters, it was noted for each parameter anywhere 
between 20-80% of patient data was missing. This can be seen in Figure 1 below which shows the 
frequency of the O2 saturation parameter per hour of patient stay. O2 saturation is considered a vital 
sign parameter and is thus recorded with regular frequency. However, it is noted that even with this 
parameter at least 10% of patient data is missing at any point in time. Additionally, looking at parameters 
that are taken less often such as those from lab tests including white blood cell count (WBC) the amount 
of missing data increases even more, with 80-90% of data missing per hour as seen in Figure 2. 
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Figure 1: Frequency of O2 saturation in patient data parameter per hour  

 

 

 

 

 

 

 

 

 

 
Figure 2: Frequency of white blood cell count in patient data parameter per hour. 

This dataset has several features worth noting which make data preprocessing more complex. Firstly, there 
are a large amount of parameters (40), a significantly imbalanced dataset, lots of missing data and varying 
lengths of patient stay. All of these challenges are often found in medical datasets. The wealth of information 
from EHRs is reflected in large amount of parameters. The imbalanced dataset is indicative of the relatively 
low prevalence of the disease within a standard patient population. Missing data is expected due to the 
infrequency of lab work (usually not done every hour) as well as the fact that parameters are usually not 
taken every hour (however, vital sign parameters are taken with relatively high frequency compared to those 
of lab test results). Finally, patient stay lengths vary due to diagnosis and time of release. These are all 
challenges found with medical datasets which will be addressed in data preprocessing. 
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b. Data Pre-Processing 

The data pre-processing was done in MATLAB. Data preprocessing reflected the challenges found 
within the medical data set. Four primary challenges found within the medical dataset were: (1) large 
numbers of parameters, (2) imbalanced dataset, (3) missing data, (4) varying lengths of patient stays. 

i. Large Number of Parameters 

To address the large number of parameters, three modified versions of the data set were selected 
with varying parameters. The first dataset contained all 40 parameters. The second dataset 
contained only 8 vital sign parameters. Finally, the last data set contained 19 parameters, including 
the 8 vital sign parameters as well as 11 parameters which have been shown to correlate with 
sepsis including: fraction of inspired oxygen (FiO2, %), pH, blood urea nitrogen (BUN, mg/dL), 
Creatinine (mg/dL), direct bilirubin (mg/dL), total bilirubin (mg/dL), serum glucose (mg/dL), lactate 
(lactic acid, mg/dL), partial thromboplastin time (seconds), white blood cell count (leukocyte count, 
count*10^3/uL) and platelet count (count*10^3/uL). These additional 11 parameters have been 
shown to correlate with sepsis, in machine learning studies (Shimabukuro et al.,2017).                   .  
 

ii. Imbalanced Dataset 

Perhaps the most difficult challenge to address was the imbalanced dataset, with only 5% of 
patients having sepsis. When the data was directly put into the model it yielded a sensitivity of 0%, 
but specificity of 95%. This resulted as the model only predicted cases of no sepsis (the majority 
class), thus yielding a falsely high accuracy which had 0% sensitivity to sepsis. Thus, inputting the 
data for training without preprocessing to balance the majority and minority data would not be 
possible. The training data preprocessing would require balancing the majority and minority dataset 
classes.  

Several approaches were tried to balance these datasets that did not work including downsampling 
the majority class, repeating/duplicating cases of the minority class to artificially increase the 
number of sepsis cases and adding class weights.  

Downsampling the majority required using only 1,000 of the majority sample cases such that there 
was an approximate equal amount of majority and minority class samples. However, the model was 
still unable to predict cases of sepsis, resulting in only a 10% accuracy in the results. This likely 
resulted from the fact that 2,000 samples total is not enough data to train the model on, given the 
large size of the data set. This method worked with none of the three parameter sets.  

Duplicating the minority class to increase the number of minority class samples, similarly resulted 
in the prediction of only one class as well as low accuracy for validation data with less than 50% 
accuracy (again predicting only one class). This likely resulted from the fact that repetition of 
minority samples caused the model to “memorize” training data and could not duplicate results on 
the validation data. Finally, adding class weights also resulted in 0% sensitivity in the results, still 
only predicting the majority class.  

Furthermore, a combination of all the methods as well as a subset of the methods were utilized. 
Downsampling the majority class as well as replicating those in the minority class yielded similar 
results in which the model predicted only one class and having an accuracy of 50% and a sensitivity 
of 0%. Combining either the downsampling or replication of the minority class with class weights, 
similarly resulted in the model having a 0% sensitivity to sepsis. Combination of all three methods 
also resulted in 0% sensitivity of the model. 
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After trying these methods, a method known as synthetic minority oversampling technique (SMOT) 
was used. SMOT increases the minority class dataset by creating new patients from the minority 
class without replication. This relies on adding synthetic Gaussian noise to minority class patient 
data to create new minority class patients without directly replicating the minority class. Gaussian 
noise with a mean 0 and standard deviation of 0.1 was added to the patient data (other levels of 
Gaussian noise with mean 0 and standard deviation (sd) 0.01, mean 0.5 and sd 0.1, mean 0.5 and 
sd 0.01, were added, however, provided the worse specificity and sensitivity). The use of SMOT 
worked well and resulted in a model with over 75% sensitivity and specificity. In addition to using 
SMOT, class weights were also used in the model. 

iii. Missing Data 

Missing data proved to be a large challenge for data preprocessing as well. With anywhere between 
10-80% of data missing for any parameter several approaches were tried. The first approach, very 
standard for missing data, was zero padding the data such that all missing values were set to 0 and 
-1 (in two different trials). -1 was chosen because negative numbers are not found in medical 
datasets and would thus be unique to missing data. However, neither of these methodologies 
yielded good results with accuracy of around 50%. Because this was a time-series dataset, the 
expected changes in parameter values were expected to change in time. The estimated relationship 
between time points for a specific parameter was estimated to be linear. Thus missing values for 
each parameter were filled in with linear interpolation between the data points. Each parameter was 
then subsequently normalized such that the values ranged only between 0 and 1. If a parameter 
was not collected it remained as 0.  

iv.  Varying Length Stays 

Inputting various size inputs into a model is not possible, thus the input size must be standardized. 
It was noted that the average detection time for sepsis was 55 hours and thus the patient files were 
standardized to approximately that size initially. With this many hours of data, the model was able 
to predict sepsis with upwards of 80% sensitivity and specificity. However, given that the challenge 
focused on early sepsis detection, timepoints of 17 hours and 3 hours were given as benchmarks 
for sepsis detection. For each of the two trials only 3 hours and 17 hours of patient data were 
inputted into the model. These two timepoints were used as benchmarks in the model for early 
prediction of sepsis and thus fulfilled the varying length of stay concern, limiting patient data to 3 
and 17 hours.  

Overall the final data set was preprocessed in the following ways: 

(1) To address a large number of parameters, three parameter subsets were created for the model to be 
tested on: all parameters (40), vital sign parameters (8) and vital sign parameters + optional 
parameters (19) that have been shown to correlate with sepsis. The one with all parameters (40) was 
utilized in the final model. 
 

(2) To address an imbalanced dataset, SMOT was used, in which random Gaussian noise was added to 
minority class patient datasets to artificially create new patients in the minority class (sepsis). The 
random Gaussian noise had mean 0 and standard deviation 0.1.  
 

(3) To address missing data linear interpolation was used to fill in missing data. Any parameter that was 
not taken, was set to 0. Additionally, all parameters were normalized relative to itself such that all 
values of a parameter existed between 0 and 1.  
 

(4) To address the varying lengths of each patient file, two benchmark data timepoints were used for 
early detection of sepsis: 3 and 17 hours.  
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c. The Model 

i. Structure of the model 

The model was developed in python using Keras and Tensorflow.  

The input data was the patient data from 3 and 17 hours (in two different trial series) such that with 
only this data, the model should predict whether sepsis exists or not. Thus, inputting this data allows 
for the problem to be turned into one of binary classification.  

While it may seem natural to use long short-term memory (LSTM) cells for a time-series data set, 
LSTM layers are not supported by Intel’s neural compute stick 2 and thus the model was developed 
using dense layers. The model had 7 dense layers and a Leaky Rectified Linear Units (Leaky ReLU) 
activation function for the hidden layers. The output layer had a sigmoid activation function and 
binary cross entropy, as these are typically used with a binary classification problem.  The nodes 
from for the 7 dense layers respectively were: 256, 128, 64, 64, 32, 32 and 1 node. A visualization 
of the model can be seen in Figure 3 below.  

 

Figure 3: Visualization of the model 

ii.Training of the model 

The model was trained on approximately 36,000 patient data sets (50% sepsis, 50% no sepsis cases 
→ from SMOT), with a validation set of 20,000 patient files (5% sepsis, 95% no sepsis, no SMOT). 
The model was trained up to 30 epochs and each the model was saved to find the best specificity 
and sensitivity of the model, which was calculated after each epoch. A noticeable trend was that as 
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sensitivity increased specificity decreased. An example of this can be seen in Figure 4 below, as 
function of the number of epochs.  

 

Figure 4: Specificity and Sensitivity vs. Number of Epochs. A noticeable trend is the increase in sensitivity results in a 
decrease of specificity. 

While sensitivity to the disease is most important, specificity must also be retained such that only 
one class is not predicted. Thus, sensitivity and specificity must both be above 70%. 

4. Implementation on Intel’s Movidius Myriad X VPU and CPU  

After the model was developed in Keras and trained on a CPU, it was then converted to Tensorflow 
framework as this is supported by Intel’s OpenVINO Toolkit. This was done on Windows 10 Software on an 
x86-64bit processor. This was then converted to an intermediate representation (IR) file which was then 
implemented on Intel’s Movidius Myriad X VPU (Neural Compute Stick 2) and a CPU.  

5. Results 

a. The Model 

Given the model described above, using a validation data set of 20,000 patient files (5% of which were 
sepsis cases), 3 and 17 hours of patient data and all 40 parameters (Note: using the other sets of 
parameters were less successful yielding less than 70% sensitivity and specificity), the sensitivity (true 
positive rate) and specificity (true negative rate) of the model were 76% and 80% respectively. This 
indicates that the model successfully detected 76% of cases of sepsis and successfully classified 80% 
of healthy patients. Using only 3hrs of patient data the sensitivity (true positive rate) and specificity (true 
negative rate) of the model on the validation data were 72% and 71% respectively.  

b. Implementation on Intel’s Myriad X VPU 

The model was successfully implemented on Intel’s Neural Compute stick 2 (Myriad X VPU). The 
average time per patient file to predict an outcome was 10ms (predicting approximately 20,000 patients 
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within 3 minutes). This is a very fast timeframe for predication and seems feasible for bedside patient 
diagnostics/early detection. Additionally, Intel’s Neural Compute Stick 2 costs $80 and is a USB device, 
reflecting both low cost and portability of the device increasing its clinical feasibility.  

6. DISCUSSION 

Overall, the results of the model predict sepsis cases well with 3hrs (72% sensitivity and 71% specificity) 
and 17hrs (76% sensitivity 80% specificity) of patient data. While these results are reasonable for an initial 
model, results yielding above 80-90% specificity and sensitivity would be more reasonable for clinical 
practice. The implementation of the model on the neural compute stick 2 was also successful with low 
patient prediction times from the deep learning model.  

7. NEXT STEPS AND FUTURE WORK 

This project has many potential next steps and future work. The three main areas for future work and 
research include, data preprocessing, the model and implementation of the neural network. Within data-
preprocessing, there are many areas of research, including how to best deal with missing values. Papers 
have suggested different methods including masking missing values, zero-padding and many more 
methods. Given the volume of missing data, optimizing these values could give the model a significantly 
higher accuracy. Additional data preprocessing would include further optimizing the parameters used to 
improve the accuracy of the model. The current results utilize all 40 parameters of the model. While the 
other two selected parameter sets may not have yielded good results, there is likely further parameter 
optimization. Given that these results used all the parameters, optimizing which parameters best predict 
sepsis could not only increase the accuracy of the model, but clinically allow for more important parameters 
to the taken/focused on.  

Within the model itself, current work being done includes optimizing the hyperparameters of the model to 
maximize specificity and sensitivity of the model including number of nodes, activation functions etc. Future 
work on the model includes making the model using LSTM cells in order to utilize the time series dataset, 
as LSTM cells are often more conducive to time-series data. The main focus in the next steps is tuning the 
hyperparameters of the model. 

8. CONCLUSION 

Deep learning within healthcare is an emerging and promising field to improve disease detection and patient 
outcomes. Successful deep learning models and implementation of deep learning algorithms could allow 
for more accurate, faster and earlier diagnosis of patients. This could lead to more treatment options for 
patients which could ultimately lead to a decreased mortality rate for many diseases. In particular, the 
applications of early diagnosis are particularly pertinent to time sensitive diseases including sepsis, which 
this project focused on. The deep learning model and data preprocessing allowed the model to have 72% 
sensitivity and 71% specificity with only 3 hours of patient data and 76% sensitivity and 80% specificity for 
17 hours of patient data. While this specificity and sensitivity are reasonable, for clinical application or 
assisted diagnosis, sensitivity and specificity above 80-90% would be preferred. Hence future work and next 
steps includes more data preprocessing and hyperparameter tuning to improve the specificity and sensitivity 
of the model. Additionally, the successful implementation of the model on Intel’s neural compute stick 2 
indicates clinical feasibility through its speed and portability. This project found that the neural compute stick 
2 required an average of 10ms to diagnose each patient given the patient file, proving speed, while the small 
USB nature, suggests portability. Although the model requires improvements to increase its accuracy, the 
model produced from this project predicts sepsis well and underscores the clinical viability of implementing 
machine learning models for assisted diagnosis in hospitals. 
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