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Project Specification

In High-Energy Physics, experiments’ trigger and reconstruction run on homogeneous computing
systems. Machines which are not specialized can run different work-flows with average perfor-
mance. However, the LHC will enter an era of long luminosity doubling times with the expectation
that small signals will gradually emerge from backgrounds. Any physics that is discovered will
need very high statistics to fully explore its properties, hence requiring large samples of data.
The experiments’ computing infrastructure has grown, but because of the non-unlimited funding,
will not by as much as needed to keep up. Making computing systems like the trigger farms
heterogeneous would help in optimizing resources, by offloading different types of computation
to the machines whose topology and architecture are the best match for the job. The purpose of
this project is to develop a small scale demonstrator with a software framework that can be used
to offload specific type of computation to another better suited node
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Abstract

The High Luminosity upgrade scheduled for 2026 will greatly increase the number of events per
collision. Moore’s law will optimistically get a factor 4 performance gain, not enough to handle the
luminosity increase without incurring significant costs and logistic issues as the actual system is
already deeply optimized.

A possible solution is the creation of a heterogeneous cluster, a cluster in which different nodes
have different kinds of co-processors available. This study tackles the problem of moving effi-
ciently a task that can be executed on a co-processor to a different node in the cluster.

As a first step, a standalone application to study the communication protocol between the three
kinds of nodes has been implemented. Then, the protocol has been introduced into the frame-
work by implementing new kinds of EDProducers and EDAnalyzers. Finally, the code has been
benchmarked and the results analyzed.
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1. Introduction

The High Luminosity upgrade scheduled for 2026 will greatly increase the number of events per
collision. Moore’s law will optimistically get a factor 4 performance gain, not enough to handle the
luminosity increase and consequently the data acquisition chain must be able to process even
more data per second. The actual system is already deeply optimized, so there is the need to
either increase the cluster/datacenter size or to explore new solutions.

Right now the cluster used by the CMS experiment is homogeneous, that is it’s entirely composed
of "normal" servers that execute the work on CPUs, even for workloads that could be executed in a
more optimized way on a different architecture as, for example, GPUs, Field-Programmable Gate
Arrays (FPGAs) and other kinds of accelerators.

The idea is to explore the creation of a heterogeneous cluster, in other words a cluster with
different kind of nodes/architectures available, and to offload the computation to the most efficient
node available.

Nodes are differentiated into three kinds based on their capabilities, with the three categories
being:

• A Scheduler that knows the infrastructure of the cluster and can choose the most suitable
node for the computation;

• Offloaders that execute a chain of modules, offloading the ones that can be executed faster
on a different machine;

• Workers that are equipped with an accelerator of any kind (e.g GPU, FPGA|).

As a first step, a standalone application to study the communication protocol between the three
kinds of nodes has been implemented. Then, the protocol has been introduced into the frame-
work by implementing new kinds of EDProducers and EDAnalyzers. Finally, the code has been
benchmarked and the results analyzed.

Heterogeneous2 frameworks 1
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2. Motivation

2.1 Cluster architecture

The intent of this chapter is to cover the concepts and the ideas that motivate the introduction of
a heterogeneous cluster in the CMS experiment.

A computer cluster is defined as a set of computers, tightly or loosely coupled, that execute the
same task to reach a common goal.

Usually the nodes of a cluster are connected with each other with an Ethernet connection in a
LAN. In most cases, all of the nodes have the same or equivalent hardware.

When heterogeneous computing is introduced in such a cluster every node is equipped with the
same co-processor, for example one or more GPUs, FPGAs or many-core architectures like the
Xeon Phi. This allows for a great performance boost but, even with medium sized clusters, it can
become an important expense.

2.1.1 A novel approach: heterogeneous clusters

A heterogeneous cluster is a cluster that has different sets of capabilities between each node.
This can be due to many factors:

• the addition of co-processors only on certain nodes;

• the addition of different kinds of co-processor on different nodes;

• the use of different CPU architectures;

• the use of nodes with drastically different computing power between each other.

Figure 2.1: A graphical representation of a standard, homogeneous cluster of computers

Heterogeneous2 frameworks 2
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Figure 2.2: A cluster for heterogeneous computing, with the same co-processor in any node

This approach offers greater flexibility both in the creation, modification and update of the cluster
and in its use, but it creates the necessity of a different programming paradigm: programs now
are made only for parallel computing, heterogeneous computing or a combination of the two.

Differently from a homogeneous cluster that exploits heterogeneous computing, where the num-
ber and the type of coprocessor are the same for every node and therefore are known, a node in
a heterogeneous cluster knows neither if there exists a node with a specific accelerator nor how
to locate it. To be able to fully exploit the cluster it is then vital to develop a system that allows to
offload specific tasks to the most suitable node.

Figure 2.3: A heterogeneous cluster. Every node can have a different kind and number of co-
processors

Heterogeneous2 frameworks 3
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(a)

(b)

(c)

Figure 2.4: Difference between execution on the same machine (2.4a) and offload to a node that
can exploit a much more efficient implementation for the same task (2.4b). Note that offloading
becomes even more beneficial the more modules are offloaded (2.4c)

2.2 CMS Trigger and Data Acquisition System

The Trigger and Data Acquisition system [8] by the CMS experiment is composed of two parts:

• Level 1 Trigger, which implements the first filter after the data acquisition and is based on
FPGAs and Application-Specific Integrated Circuits (ASICs);

• High-Level Trigger [2], which takes as input the events accepted by the L1 trigger and
reconstructs, analyzes and filters them.

As stated in [5], in 2016 the HLT runs on a cluster of commercial computers, made of ~22000 Intel
Xeon cores. This cluster runs a streamlined version of CMSSW [1], the C++ offline reconstruction
software, processing many events in parallel [6].

2.3 Environment: the CMSSW framework

The CMSSW framework is used in the CMS experiment for the High-Level Trigger (HLT), data analy-
sis and reconstruction. It is a module-based framework written in C++ and configured via Python
scripts. It revolves around the concept of Event. An event is defined as a set of data resulting
from an interaction, or several interactions, originated from a collision.

2.3.1 EDM: Event Data Model

Events are processed by passing them through a sequence of modules. Every EDProducer can
add data to the Event. Every module can read from the Event every object available at execution
time.

Heterogeneous2 frameworks 4
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Producer

Filter

Filter

Output

Source

Analyzer

Producer

Figure 2.5: A graphical representation of a CMSSW path
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2.3.2 Module types

A module is a component of the CMSSW framework that encapsulates a unit of clearly-defined
event-processing functionality. Different categories of modules are available:

Source

Creates the Event and adds data to it.

EDProducer

Takes data from the Event in one format, elaborates it and produces data in another format to be
put into the Event.

EDFilter

Takes data from the Event and returns a boolean value used to determine if the processing of the
current Event for the current path should continue or not.

EDAnalyzer

Takes data from the Event and analyzes it. It is not allowed to add new data to the Event.

2.3.3 Services

2.3.4 Configuration files

A single executable, cmsRun, is used to execute every module. Its execution is configured via a
configuration file written in Python, which defines which modules are loaded, which configurable
parameters they have to use, and in which exact order they are run. This last specification is
called a path.

2.4 The offloading model

A model and a protocol for the offloading of tasks to a different node have been studied. Three
different node categories have been identified:

• Offloaders, which execute a chain of modules, offloading on another node the ones that can
be executed faster on a different architecture;

• Workers, which wait for incoming tasks from any Offloader;

• Scheduler, which orchestrates between the requests of Offloaders and the availability of
Workers.

The term task is used to describe a single module or a set of modules that are offloaded to a
Worker.

Each node type has a different task and behaves accordingly, coordinating with the other nodes
to produce the expected result.

Heterogeneous2 frameworks 6
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The Scheduler node is the centralized "brain" of the model: it acts as a source of information for
the other nodes, ultimately deciding which node to use for a specific task. It has a mapping of all
the Worker nodes, with the following details for each Worker:

• total number of accelerators;

• number of available accelerators at any specific moment;

• Worker’s coordinates.

Upon request from an Offloader node, the Scheduler chooses a Worker for the task and sends
its coordinates to the Offloader.

Workers wait for incoming messages from any Offloader. Upon receiving an incoming task de-
scription (an identifier for the task and the input data) it is in charge of finding the right modules
to be executed and to manage the interactions with the chosen co-processor.

Offloaders are in charge of executing the main algorithm (the main path). When an Offloader
encounters a module or a set of modules that can be executed to another node with an advantage,
they are offloaded, with the modality described in 2.4.1, to a Worker node.

OffloaderOffloaderOffloaderOffloader

Scheduler

WorkerWorkerWorkerWorker

OffloaderOffloader OffloaderOffloader

update_node_info()

return_result()

do_work()

use_gpu()

get_gpu()

Figure 2.6: An iteration of the offloading model: first an Offloader asks for a Worker node to the
scheduler, then it offloads work to the same node and waits for the result. After the result is sent
the Scheduler gets updated from and for the requested Worker

2.4.1 Communication protocol

Initialization

At the program startup every Worker node must send its information (number and type of accel-
erators, coordinates) to the Scheduler. In this way only the Scheduler needs to be aware of the
position, the type and availability of the Workers nodes.
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Execution

If, during the execution of the code, an Offloader encounters a task that can be offloaded to a
different architecture it performs the following steps:

1. inquire the Scheduler for a Worker node (get_worker());

2. send the task description and parameters to the chosen Worker node (do_work());

3. execute other modules while waiting for the answer to come back from the Worker node;

4. continue the execution of the workload.

Upon reception of a message from an Offloader, a Worker node performs the following steps:

1. retrieve the set of modules associated with the task description;

2. offload the computation on the chosen co-processor;

3. return the results of the computation to the Offloader that requested it.

Termination

Both the Scheduler and the Workers are executing an infinite loop and must be stopped by an
external condition to close the program gracefully. All Offloaders get synchronized to make sure
that every task is terminated and one Offloader, designated as a master node, send a termination
message to every Worker and the Scheduler.

Heterogeneous2 frameworks 8
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3. Implementation

3.1 MPI

MPI [9] is a standard to facilitate message passing between processes. It is the industry-standard
specification for writing message passing programs.

There are several implementations of this standard, for example MPICH [4] and OpenMPI [3]. For
the purpose of this document we will reference MPI version 3 and the OpenMPI implementation.

3.2 Intel TBB

TBB [7] is a C++ library developed by Intel for enabling parallelism in C++ applications and li-
braries. It is designed, in particular, for applications that are loop- or task-based. CMSSW uses
TBB internally.

3.3 Proof of Concept

As a first stage, the communication protocol has been implemented and tested in a standalone
C++ program, using MPI for the interprocess communication and Intel TBB for creating and han-
dling multithreading.

It is available at github.com/sere/the_offloadinator. It is compiled using:

C -ltbb -g the_offloadinator.cpp -o the_offloadinator

and run with mpirun -n N the_offloadinator, with N defined as an arbitrary value greater
than 3.

It features 3 classes, one for each kind of node described in Section 2.4: Scheduler, Worker and
Offloader.

Only one Scheduler is instantiated while Offloaders and Workers are instantiated on multiple
processes (using MPI) and on multiple threads (using TBB).

The MPI id mpi_id determines the nature of the node (n = number of nodes):

• Workers belong to the range [0, MPI_FIRST_OFF - 1];

• Offloaders to the range [MPI_FIRST_OFF, n - 2];

• the Scheduler is node n - 1.

Heterogeneous2 frameworks 9
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The value for MPI_FIRST_OFF can be changed programmatically, making sure to have at least
one Offloader and one Worker. It is set to n/2.

Four threads are created on each Offloader node, while two threads are created on each Worker
node. These numbers are non-binding and can be changed programmatically.

Every thread has its private Offloader/Worker class instance and runs the function offload()
/work()

3.3.1 Scheduler

The Scheduler class manage the MPI requests for nodes in the method schedule().

Initialization

The Scheduler class is initialized with only one parameter: the number of Workers available in
the system.

During initialization the Scheduler receives, from every Worker present in the system, the infor-
mation about the Worker itself: MPI rank and number of co-processor available on the Worker
node. These are stored into a map, with the key being the MPI rank.

schedule()

This method waits indefinitely on incoming MPI messages from any source and with any tag.
Three kinds of message are possible:

• a request from an Offloader for a Worker, with tag SCHED_REQ + mpi_id;

• updated information about a Worker, with tag SCHED_UPD + mpi_id;

• termination message, with tag SCHED_DIE = mpi_id.

The mpi_id has been added to the MPI tag to facilitate debugging and traceability.

3.3.2 Offloader

To simplify the proof of concept, every Offloader executes only one task, then exits. Tasks can
be offloadable or not. In the first case, the Offloader instance asks the Scheduler for a Worker
and proceeds with sending the task to this Worker. If no Worker is available or the task is not
offloadable, this will be executed directly by the Offloader.

3.3.3 Worker

Workers wait for incoming messages from any Offloader. Upon reception of a message, the
counter gpu_available_ is decremented and the task is executed. After execution, the number
of available co-processors is updated again and a message is sent to the Scheduler with the state
of the Worker.

Heterogeneous2 frameworks 10
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MPI_Send(job)

SendAnalyzer

WorkProducer

FetchProducer

EmptySourceEmptySource

PrintAnalyzer

OffloadProducer

ArraysProducer

MPI_Send(answer)
answer

job

answer

job

Figure 3.1: The two paths representing an Offloader (left side) and a Worker (right side). Modules
in blue are aware of the MPI communication, while modules in green communicate directly with
the GPU.

3.4 MPICore

MPICore is a first implementation of the offloading mechanism inside CMSSW. It is structured as
6 modules, 3 for the Offloader implementation and 3 for the Worker one.

Offloaders and Workers are run by independent cmsRun commands but both under the same
mpirun command, with this format:

mpirun -n N cmsRun MPIWorker.py <params> : -n M cmsRun MPIOffloader.py <
params>

The syntax -n N cmsRun executable_1 : -n M executable_2 is used to run both exe-
cutables under the same MPI communicator. The code performs a root of sum squares between
two vectors. The two vectors are built in the Offloader, sent via MPI_Send to the Worker and the
result is sent back to the Offloader to simulate a complete interaction.

Every module belongs to the interface edm::stream. Using this interface every Stream is as-
sociated with its own instance of a Stream module. This is needed to allow for true parallelism
between different Events. As modules in MPICore don’t need to coordinate between different
streams, this interface can be used.

3.4.1 Initialization

MPI is initialized with MPI_Init_thread with MPI_THREAD_MULTIPLE as the required level
of thread support. This is needed because the MPICore uses Streams and therefore it’s multi-
threaded. MPI_THREAD_MULTIPLE allows MPI calls by any thread, with no restriction. This, in
conjunction with the use of the interface edm::stream, allows the full exploitation of multithread-
ing.

The initialization code has been written in a new Service called MPIService.

Heterogeneous2 frameworks 11
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3.4.2 Offloader

Offloader nodes are configured in MPIOffloader.py, which takes the following command-line pa-
rameters:

• vlen, the length of the vector (default: 1)

• maxEvents, the number of events to run (default: -1)

Multiple instances of an Offloader can be executed on different cluster nodes. The number of
nodes is configured via the -n parameter of mpirun.

It is composed by the following 3 modules:

ArraysProducer

Subclass of edm::stream::EDProducer.

Create a vector of 2 * vecLen elements, initialize it with random double elements and put it into
the Event.

OffloadProducer

Subclass of edm::stream::EDProducer, handles the communication with the Worker.

Consume the std::vector<double> created by ArrayProducer, send its raw data as a
serialized object of type char[] to a Worker via MPI_Send, receive the result of the computation,
a serialized object of type char[], from the same Worker via MPI_Mprobe and MPI_Mrecv and
produce this array as std::vector<double>.

64 MPI_Ssend(buffer.data(), buffer.size(),
65 MPI_CHAR, workerPE, WORKTAG + mpiID,
66 MPI_COMM_WORLD);
81 MPI_Mprobe(workerPE, WORKTAG + mpiID, MPI_COMM_WORLD, &message, &

status);
82
83 int size;
84 MPI_Get_count(&status, MPI_CHAR, &size);
85 io::unique_buffer write_buffer(size);
86 MPI_Mrecv(write_buffer.data(), size, MPI_CHAR, &message, &status);

Listing 1: OffloadProducer

PrintAnalyzer

Subclass of edm::stream::EDAnalyzer.

Consume the result of the computation and, if debugging is on, print it.

3.4.3 Worker path

Worker nodes are configured in MPIWorker.py. They take the following command-line parame-
ters:

Heterogeneous2 frameworks 12
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• streams, the number of CMSSW Streams to use (default: 1)

• maxEvents, the number of events to run. To allow the program to terminate cleanly, it
must be equal to the number of Offloaders times the number of events for the Offloaders.
(default: -1)

• runOnGpu. If this boolean is True the task will be run on the GPU using Compute Unified
Device Architecture (CUDA), otherwise it will be run on the CPU.

A Worker path is composed by the following 3 modules:

FetchProducer

Subclass of edm::stream::EDProducer.

Receive a serialized vector of type char[] from a Producer via MPI_Mprobe and MPI_Mrecv,
transform it into a std::vector<double> and produce it.

49 MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &message,
&status);

63 MPI_Get_count(&status, MPI_CHAR, &size);
64
65 std::map<std::string, double> times;
66 io::unique_buffer write_buffer(size);
67 MPI_Mrecv(write_buffer.data(), size, MPI_CHAR, &message, &status);

Listing 2: FetchProducer

WorkProducer

Subclass of edm::stream::EDProducer.

Consume the std::vector<double> gathered by FetchProducer, offload the task on the
GPU if runOnGPU is True else run it on the CPU and produce the result of the computation as a
std::vector<double>.

74 if (runOnGPU_)
75 call_cuda_kernel(*vectorHandle, *result, dev_array_,

dev_result_);
76 else
77 rss(*vectorHandle, *result);

Listing 3: WorkProducer

SendAnalyzer

Subclass of edm::stream::EDAnalyzer.

Consume an std::vector<double>, send it serialized as a char[] to the same Producer via
MPI_Send.

64 MPI_Ssend(buffer.data(), buffer.size(),
65 MPI_CHAR, *offloaderIDHandle, *mpiTagHandle,

Heterogeneous2 frameworks 13
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66 MPI_COMM_WORLD);
Listing 4: SendAnalyzer

Heterogeneous2 frameworks 14
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4. Results

4.1 Test environment

The machine used to run the tests features:

• MPI version 3, OpenMPI version 2.1.5

• CentOS Linux release 7.5.1804

• CMSSW 10_2_4_Patatrack

• CPU: Dual Socket Intel Xeon E5-2650 0 @2.00Ghz, 2 threads per core, 8 cores

• GPU: Tesla K20Xm

answer, times

PrintAnalyzer
SendAnalyzer

MPI_Ssend(answer)

MPI_Send(times)

WorkProducer

call_cuda_kernel()

FetchProducer

MPI_Mprobe()

MPI_MRecv()

OffloadProducer

MPI_Ssend(job)

MPI_Recv(answer)

MPI_Send(times)

sendResEnd
jobEnd

algoEnd
algoStart

jobStart

offloadEnd

sendJobEnd
offloadStart

MPI_Send(answer)

MPI_Send(job)

answer, times

job, times

Figure 4.1: The modules and the probe points inserted in MPICore. Time measures are taken
before and after the first MPI_Ssend (offloadStart, sendJobEnd), after the first MPI_MRecv
(jobStart), before and after executing the task (algoStart, algoEnd), before and after the
MPI_Ssend for the answer (jobEnd, sendResEnd) and after the MPI_Recv for the answer
(offloadEnd).

A number of different probe points were set up to analyze the behaviour of the framework in
different places:
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• offload time, the amount of time spent on the whole offloading, from offloadStart to
offloadEnd;

• sendData, the amount of time used to send the arrays to the Worker. It goes from offloadStart
to sendJobEnd;

• job time, the amount of time used by the Worker upon receiving the request and until the
shipping of the response. It goes from jobStart to jobEnd;

• algorithm time, the amount of time spent in the algorithm execution. It goes from algoStart
to algoEnd;

• sendRes, the amount of time used to send the results to the Offloader. It goes from jobEnd
to sendResEnd.

A number of derived timings were created:

• overhead. It is defined as (offload time - algorithm time);

• job_time. It is defined as (job time - algorithm time).

Tests have been made varying the vector length and the device type.

4.2 Overhead

Figure 4.2a depicts the raw overhead created by the offloading code. Running the code on a GPU
has an additional initialization overhead, even though an attempt has been made to exclude ini-
tialization costs from the metric. This becomes negligible with arrays of size greater than 100000,
which is a more likely use-case.

Increasing the vector length makes the overhead grow in absolute terms, but the cost per vector
element shrinks considerably.
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(a) (b)

(c) (d)

Figure 4.2: Distribution plot of overhead for different vector lengths. The difference between
the CPU and GPU implementations becomes negligible with an array size of more than 100000
elements

(a) (b)

Figure 4.3: Overhead mean for 1 offloader, 1 worker for each vector length, absolute (4.3a) and
relative to vector length (4.3b)
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5. Conclusions

The use of MPI has been proven a viable and efficient way to offload tasks on another node. The
infrastructure and protocol has been defined and its stability has been assessed. The bench-
marks have shown that the overhead that MPI introduces is reasonable. However, the decision to
offload or not a certain task cannot be based only on the existence of tasks with a co-processor
implementation. but it must take into account both the network latency and the overhead caused
by MPI.
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