
Benchmarking Machine Learning in
HEP

AUGUST 2018

AUTHOR:
Sabina
Manafli

CERN IT-CF
CMS

SUPERVISORS(S):

Felice Pantaleo
Luca Atzori

CERN openlab Report 2018

Abstract

The interest on machine learning workloads in the HEP community has increased exponentially
in the last years, making more and more important the need of a thorough benchmarking of
the most relevant/significant workloads that are going to run on the experiments. The purpose
of this project is to build a set of techniques to benchmark deep neural networks on different
hardware. By using different tools and methodologies we make several important observations
and conclusions based on the performance of deep learning application running on GPUs which
have different compute capabilities.

Benchmarking Machine Learning in HEP ii

CERN openlab Report 2018

Contents

Contents iii

1 Introduction 1

2 Background 2
2.1 Application Selection . 2

2.1.1 GANs . 2
2.2 Framework Selection . 2
2.3 Hardware . 2
2.4 Environmental Setup . 3

3 Methodology 4
3.1 Profiling via sampling . 4
3.2 Relevant Metrics . 4

4 Results 6
4.1 GPU Compute Utilization . 6
4.2 FP32 Utilization . 7

5 Future Work 8

6 References 9

Bibliography 10

Benchmarking Machine Learning in HEP iii

CERN openlab Report 2018

1. Introduction

Training new deep learning models efficiently is one of the most important topics in machine
learning. Given the model, it is important to train it as fast as possible and most efficiently by ex-
ploiting the computational resources of hardware.For this we need to choose the right hardware
for our models. Therefore the next step should be thoroughly done benchmark.
In this paper we present benchmark of GANs on three different GPUs. We performed perfor-
mance analysis of the model to gain interesting insights.
Followings are the main contributions of this project
1. Set of techniques to benchmark deep learning models. In order to benchmark model we
need to choose relevant metrics for performance analysis. To measure this metrics on different
GPUs which have different compute capabilities we need infer formulas that will be presented in
Methodology part of paper
2. Findings and Recommendations. Based on the result of profiling and performance analysis
we make several observations and recommendations.

Benchmarking Machine Learning in HEP 1

CERN openlab Report 2018

2. Background

2.1 Application Selection

The use of Generative Adversarial Networks (GANs) is of particular interest because of potential
applications for particle physics. Based on the fact that Generative Adversarial Networks(GANs)
are widely used at CERN for fast detector simulation we decided to use GANs as an application
for our benchmarking experiment. WGAN specifically is chosen for the benchmark as it is one of
the leading models in the area of unsupervised learning algorithms.

2.1.1 GANs

Generative Adversarial Networks is unsupervised machine learning algorithm which trains two
networks competing against each other:one generator and one discriminator network. The gen-
erator is trained to generate images based on given noise input and Discriminator is trained to
distinguish real and generated images.

2.2 Framework Selection

There are many open-source frameworks for DNNs, such as TensorFlow Theano,Caffe ,Torch,PyTorch
et al.To perform efficient computation of certain layers of DNNs they apply different memory man-
agers, specific libraries. However most of them have similar code structure and high level API.
Although there is not one single and best framework, we decided to choose tensorflow as it
supports single and multiple GPUs, are being evolved consistently, and has many already imple-
mented models of GANs.

2.3 Hardware

As different GPU models has different cost, performance, and power, it is critical to understand
how the key metrics are affected by different GPUs in DNN training. Therefore the model is run
using three types of GPU, the NVidia V100, K40C,K20Xm.
Table 2.1 below compares the technical specifications of three GPUs that we benchmarked.

Tesla K20Xm Tesla K40c Tesla V100
Architecture Kepler Kepler Volta
Floating point performance 3.935 GFLOPs 4.291 GFLOPs 14.131GFLOPS
Memory Bandwidth 249 G/s 288G/s 900G/s
Memory Size 6GB 12GB 16GB
Compute Capability 3.5 3.5 7.0

Table 2.1: Hardware Specifications

Benchmarking Machine Learning in HEP 2

CERN openlab Report 2018

2.4 Environmental Setup

We use CentOS 7.5.1804, Tensorflow v1.2.0 and Tensorflow v1.3.0 with CUDA 8.0 and CuDNN
7.1.3.

Benchmarking Machine Learning in HEP 3

CERN openlab Report 2018

3. Methodology

In this section we explain methodology and tool chain we used to get relevant metrics to measure
performance of model.

3.1 Profiling via sampling

DNNs can take hours or even days to train them which makes it impractical to profile entire
process. However, as training is iterative process and all iterations have the same computation
logic,we can profile only few iterations to get the desired metrics. It is important to profile when
training reaches stable state and it reaches this state after few hundreds of iterations. [1].In our
case we profiled only 5 iterations after 300th iteration.

3.2 Relevant Metrics

GPU Compute Utilization: The GPU is the main unit behind DNN training and our aim is to
keep the GPU busy all the time. Therefore it is important to examine the utilization of GPU. We
measure GPU Compute utilization as the fraction of time when GPU is busy.

GPU Utilization = GPU Active time ∗ 100 /total elapsed time

We can get this metric by simply running the code using nvprof commannd as below

nvpro f −o output . nvvp −−p r i n t−gpu−summary python yourcode . py

By importing the output file output.nvvp to Nvidia Visual Profiler we can get numbers for GPU
Compute Utilization.

FP32 Utilization: The training on DNNs is perfomed
Single precision floating points are number formats that takes 32 bit computer memory. In deep
learning training calculations are performed using floating point operations.Therefore it is impor-
tant to see how the FP32 resources of GPU are being utilized while it is active:

FP32 Utilization = actual flop count during T ∗100 /max number of FLOPS ∗total elapsed time

Profiling FP32 Utilization means is looking at the GPU Utilization from different angle.
For GPUs with compute capability 7.0 , V100 in our case, it is easier to get FP32 utilization
metrics. To get this particular metrics we need to specify

s i n g l e p r e c i s i o n f u u t i l i z a t i o n

as an option when running nvprof command as shown below

nvpro f −−p r o f i l e −from−s t a r t o f f −−met r ics s i n g l e p r e c i s i o n f u u t i l i z a t i o n −o output
. nvvp −−p r i n t−gpu−summary python yourcode . py

Benchmarking Machine Learning in HEP 4

CERN openlab Report 2018

After we get the output file we can import it to Nvidia Visual Profiler to visualize our result. What
we see in profiler is FP32 utilization of individual kernels in the scale of 1 to 10. In order get the
average utilization we need to find the average of all values.
GPUs with compute capability 3.5 does not support use of

s i n g l e p r e c i s i o n f u u t i l i z a t i o n

metrics. We need to find which metrics are used to calculate single precision utilization.
According to the answer in this forum we need to know following measures in order to calculate
single precision utilization:

• number of instructions executed on multiprocessor function unit

• active cycles

• maximum number of instructions that can be executed in single cycle on multiprocessing
function unit

Following metrics can be used to get first two above listed measures: inst count,-e active cycles.
Number of instructions that can be executed in single cycle on multiprocessing function unit can
be obtained from Floating point performance of GPU. In our case it has been mentioned in Table
2.1

Benchmarking Machine Learning in HEP 5

https://devtalk.nvidia.com/default/topic/1026722/visual-profiler/meaning-of-quot-single_precision_fu_utilization-quot-metric/

CERN openlab Report 2018

4. Results

As previously mentioned, this analysis will focus on a following key metrics: GPU compute
uilization and FP32 utilization The focus of project is to observe how these metrics change
as we change mini-batch size on different GPUs. More specifically, the effect of key hyper
parameter,mini-batch size, on mentioned metrics will be studied.

4.1 GPU Compute Utilization

Figure 4.1 shows the GPU compute utilization on three different GPUs as we change mini batch-
size. Following observations have been made. Observation 1: The mini-batch size should be
large enough to keep the GPU busy. Larger mini batch size means GPU spends more time doing
computations rather than invoking and finishing small kernels.[1]

Figure 4.1

Observation 2: More advanced GPUs should be accompanied by better systems designs and
more efficient low-level libraries. V100 usually helps improving training time and through-
put,however the computation power of V100 is not well and fully utilized. Hence it can be con-
cluded that, although V100 is computationally more powerful the proper utilization of these re-

Benchmarking Machine Learning in HEP 6

CERN openlab Report 2018

sources requires a more careful design of algorithms that can efficiently exploit these resource.

4.2 FP32 Utilization

Figure 4.2shows the FP32 utilization on three different GPUs as we change mini batch-size.
K40C achieves 85.7% utilization while it is 48.9% in V100 GPU.
We make the following observations Observation 1: As expected the mini-batch size improved
FP32 utilization.
Observation 2: As observed in previous section, FP32 is not utilized in V100.

Figure 4.2

Benchmarking Machine Learning in HEP 7

CERN openlab Report 2018

5. Future Work

This project set the foundation of techniques to benchmark given deep learning application on
GPUs. This project can be further developed by benchmarking more machine learning applica-
tions on more GPUs.

Benchmarking Machine Learning in HEP 8

CERN openlab Report 2018

6. References

Benchmarking Machine Learning in HEP 9

CERN openlab Report 2018

Bibliography

[1] Zhu, Hongyu and Akrout, Mohamed and Zheng, Bojian and Pelegris, Andrew and Phan-
ishayee, Amar and Schroeder, Bianca and Pekhimenko, Gennady TBD: Benchmarking and
Analyzing Deep Neural Network Training 4, 6

[2] Nvidia visual profilers user guide
https://docs.nvidia.com/cuda/profiler-users-guide/index.html

[3] Machine Learning
https://github.com/David-Levinthal/machine-learning

Benchmarking Machine Learning in HEP 10

	Contents
	Introduction
	Background
	Application Selection
	GANs

	Framework Selection
	Hardware
	Environmental Setup

	Methodology
	Profiling via sampling
	Relevant Metrics

	Results
	GPU Compute Utilization
	FP32 Utilization

	Future Work
	References
	Bibliography

